TÜRKİYE JEOLOJİ KURUMU BÜLTENİ

BULLETIN OF THE GEOLOGICAL SOCIETY OF TURKEY

> Cilt: XV – Sayı: 2 Vol: XV – No. : 2 1972

TÜRKİYE JEOLOJİ KURUMU BÜLTENİ Bulletin of the Geological Society of Turkey

Ağustos - 1972 - August

İÇİNDEKİLER-CONTENTS

G. ATAMAN :	Orhaneli granodiyoritik kütlesinin radyometrik yaşı (L'age radiometrique du massif granodioritique d'Orhaneli)
0. Ö. DORA :	Orthoklas-Mikroklin transformation in Migmatiten des Eğrigöz-Massivs) (Eğrigöz Masifi çevresi migmatitlerinde ortoklasmikroklin transformasyonu)
K. ERGUVANLI, E. YÜZER, K. GÜLEÇ, C. ZANBAK :	Türkiye mermerlerinin fiziko-mekanik özellikleri ve mer- merlerin sınıflandırılmaları hakkında düşünceler (The physico-mechanical properties of Turkish marbles and proposals for their classifications)
K. GÜLEÇ :	Mermerlerin ayrışma derecesi ile fiziko-mekanik özellikleri arasındaki ilişkiler (The relationship between the degree of weathering and the physico-mechanfcal properties of marbles)
T. NORMAN:	Ankara Yahşıhan bölgesinde Üst Kretase-Alt Tersiyer isti- finin stratigrafisi (Stratigraphy of Upper Cretaceous-Lower Tertiary strata of Yahşıhan area, east of Ankara)
E. SİREL:	Systematic study of new species of the genera Fabularla and Kathina from Paleocene (Paleosen'de Fabularia ve Kathina'ya ait yeni türlerin etüdü)

Bültende yayınlanan yazılardaki fikirlerden ve kullanılan terimlerden doğrudan doğruya yazarları sorumludur.

TÜRKİYE JEOLOJİ KURUMU (The Geological Society of Turkey)

____oOo_____

P. K. 464 Kızılay - ANKARA 26. DÖNEM KURULLARI (1972 - 1973)

> YÖNETİM KURULU (Executive Commitee)

Mehmet Akartuna (İÜFF) Teoman Norman (ODTÜ) Selçuk Bayraktar (MTA) Vedat Çağlayık (EİEİ) Esen Arpat (MTA) Ersin Tanören (DSİ) Tamer Ayan (E.N. EGERAN) Başkan (President) İkinci Başkan (Vice President) Genel Sekreter (General Secretary) Sayman (Treasurer) Kitaplık Üyesi (Librarian) Yayın Üyesi (Publications) Sosyal İlişkiler Üyesi (Social Affairs)

DİSİPLİN KURULU (Disciplinary Committee)

Ergüzer Bingöl (MTA) Adnan Kalafatçıoğlu (MTA) Sezer Özil (DSİ) Başkan (Chairman) Üye (Member) Üye (Member)

DENETLEME KURULU (Controllers)

Gani Uncugil (MTA) Fikret Kurtman (MTA) Mehmet Akkuş (MTA) Başkan (Chairman) Üye (Member) Üye (Member)

BİLİMSEL ve TEKNİK KURUL (Scientific and Technical Committee)

Başkan (Chairman): Cengiz Keskin (TPAO) Üyeler (Member): Ergüzer Bingöl (MTA), Tandoğan Engin (MTA), Yavuz Erkan (HÜ), Tuncer Güvenç (MTA), Ercan Koşar (EİEİ), Yılmaz Oldaç (DSİ), Necdet Özgül (MTA), Oktay Tanca (DSİ).

> YAYIN KURULU (Publication Committee)

Başkan (Chairman): Teoman Norman (ODTÜ) Üyeler (Member): Demir Altıner (ODTÜ), Ender Atabey (ODTÜ), Selçuk Bayraktar (MTA), Yavuz Erkan (HÜ), Asuman Günal (ODTÜ), Tuncer Güvenç (MTA). Türkiye Jeoloji Kurumu bu sayının basılmasına yardımcı olan Maden Tetkik ve Arama Enstitüsü'ne teşekkürlerini sunar.

ORHANELİ GRANODİYORİTİK KÜTLESİNİN RADYOMETRİK YAŞI

(L'age radiometrique du Massif granodioritique d'Orhaneli)

Gürol Ataman

Hacettepe Üniversitesi, Yerbilimleri Enstitüsü, Ankara

Öz.— Orhaneli granodiyoritinin yaşı üzerinde yapılan bu ön çalışmada 50 M.Y. lık bir yaş, dört arazi örneğinden elde edilmiş altı laboratuvar örneği üzerinde, Rb-Sr metodu kullanarak ölçülmüştü. Bulunan yaş hernekadar bazı saha jeologlarının ileri sürdüğü yaş ile çakışmakdaysa da (Tersiyer), diğer bir grup araştırıcının bu bölgeye ait kranostratigrafik sonuçlarından farklıdır. (Paleozoyik).

50 M.Y. Iık yaşın bir intrüzyon olayınımı (birincil), yoksa paleozoyik yaşlı bir kütlenin gençleşme yaşınımı (ikincil) ifade ettiği kesinlikle saptanamamıştır. Ancak Orhaneli kütlesinin 50 M.Y. evvel çok önemli bir olaya veya olay dizisine (plütonizma, metamorfizma, şiddetli tektonizma) maruz kaldığı kesinlikle söylenebilir. Bu konuyu açıklığa kavuşturmak için arazi çalışmalarımız devam etmektedir.

Résumé. – L'utilisation de la méthode géochronologique Rb-Sr a permis de mesurer un âge moyen de 50 M.A. sur six échantillons de laboratoire provenant de quatre échantillons de terrain prélevés dans la massif d'Orhaneli (Bursa). Bien que l'âge radiometrique coincide avec l'âge proposé (Tertiaire) par un certain nombre de géologues de terrain d'autres chercheurs avancent un âge fort différent (Paléozoique).

Dans le cadre de ce travail, il n'a pas été possible de savoir si ces 50 M.A. correspondent à l'âge d'une intrusion (primaire), ou au rajeunissement (secondaire) d'un massif d'âge Paléozoique. Cependant, il est acquis que le massif granodioritque d'Orhaneli a subi, il y a 50 M.A. les effets peut-être conjugués de l'un ou de l'autre de phénomènes géologiques tels que plutonisme, métamorphisme ou tectonique intense. Les travaux de terrains actuellement en cours dans le massif d'Orhaneli se poursuivent dans une optique géochronologique.

GİRİŞ

Marmara bölgesindeki Orhaneli kütlesi (Şekil -1), plajiyoklazları ve hornblendleri ile tipik bir granodiyorittir; biyotitler mükemmel bir özbiçimlik (idiyomorfluk) gösterirler. Bu kütlenin yaş münasebetlerini Kuzeybatı Anadolu plütonik kütlelerinin içinde inceleyen Kaaden (1958 ve 1959) Orhaneli granodiyoritini Paleozoyik olarak belirlemektedir. Kaaden bu sonucu baslıca üç gözleme dayandırmaktadır : 1 - Mustafa Kemalpaşa'nın güneyindeki plütonik kütlelerin NE doğrultusunda bir yapraklaşmaya sahip olduğu, oysa bunun varisk orojeneze bağlanabileceği, 2 – Edremit bölgesindeki Evbek granodivoritinin üzerinde fosilli ve metamorfik olmavan Jura-Triyas-bulunduğu, 3 — Yine aynı bölgede granit ile Trias arasında, granit ve kristalize şişt çakılları kapsıyan bir konglomera ve arkoz serisinin bulunduğudur. Avrıca, bu son gözlemdekine benzer bir durumun, Söğüt kasabası yakınında kendisi ve Uludağ'ın doğusunda Kupfhal (1954) tarafından tespit edildiğini de ifade etmektedir. Aynı şekilde Aygen (1956) Balya bölgesindeki Jeolojik çalışmasında granodiyoritlerin pre-Triyasik; Kalafatçıoğlu (1964) de Orhaneli granodiyoriti icin varisk yaşlı olduğunu belirtmektedirler. Halbuki Holzer (1954) Eğrigöz granodivoritinin Üst Kretase vaslı kalkerleri kesip metamorfizmava uğrattığını ileri sürmektedir. Vachette et al. (1968) Orhaneli granodiyoriti üzerinde yaptıkları bir radvometrik vas tavininde 61 M.Y. bulmuslar ve bunu granitik kütlenin vası olarak yorumlamışlardır. Aynı araştırıcılar bu sonuçlarının bazı arazi gözlemlerine de davandığını belirterek Tavşanlı bölgesinde yeşil kayaçların Maestristiyen yaşlı resif kalkerlerini örttüğünü ve bu durumun birçok noktada gözlenebildiğini yazmaktadırlar. Böylece bu calısmacıların kronostratigrafisinde granit, yeşil kayacların üzerinde ver almaktadır. Okav (1948) Güvnükbelen kütlesinin kuzev kısmında granodiyoritin serpantini delip üzerinde yayıldığını, güneyde ise granodiyorit içinde serpantin parçalarının bulunduğunu gözlemiştir. Bu şartlar altında granodiyorit, Maestristiyen yaşlı kalkerler ve yeşil kayaçlardan daha genç olmaktadır. Şu halde bu bölge granodiyoritleri için Jeolojik yaşlar kabaca iki orojenez etrafında olup, bunlardan birincisi varisk, ikincisi ise alpindir.

ORHANELİ GRANODİYORİTİNİN YAŞI ÜZERİNDE ÇALIŞMALAR

Orhaneli granodiyoritinden alınan dört örnek üzerinde tüm kayaç izokronu çizebilmek için yapılan bir çalışma başarısızlığa uğramıştır; zira bütün örneklerde ölçülen (⁸⁷Sr/⁸⁶Sr) ve (⁸⁷Rb/⁸⁶Sr) oranları birbirlerine gayet yakın değerlere sahip olduklarından bir izokron doğrusu çizilememiştir. Bu şekilde bir çalışma yapılmaksızın bulunan yaşın Orhaneli kütlesinin yaşı olduğunu ileri sürmek hatalı olur. Halbuki,Vachette et al. (1968) bir tek kayaç örneği ve onun mineralojik bileşenlerine dayanan bir mineral izokronu çizerek Orhaneli granodiyoritin yaşını 61 M.Y. bulmuşlardır. Bu bulunan

1/500 000 ölcekli Türkiye Jeoloji Haritası u Orhaneli Bölgesi AAA Serpantin, pirelecnit, peridotit, diperit Polettoyik Mistolin Neglen volkanik (17, 18, 19, 20)^{Numunelerin} +++ Grandiyarik Parmiyen Andezit ([] Naojen 5 5 5 ٥

sayı kanımca, örneğin alındığı bölgede granodiyoritin biyotitinin ne zamandan beri bir kapalı sistem halinde olduğunu ifade etmektedir. Eğer bu kapalı sistem haline geliş, granitik kütlenin entrüzyondan sonra soğuyarak mineraller arasında Rb ve Sr difüzlenmesinin durduğu an ise, kütlenin vasını bir dereceve kadar belirlediğimizi ileri sürebiliriz. Fakat, kavac kütlesi kapalı sistem haline geldikten sonra bir metamorfizmaya veya tektonik ezilmeye maruz kalmışsa, bu olavlar mineraller arasında Rb-Sr difüzlenmesine sebep olacaktır: yani mineraller arası izotopsal homojenleşme, olayların şiddetine göre, tam veva kısmî bir şekilde gercekleşecektir. Bu şartlarda hesaplanan yaş plütonik kütlenin yaşı olmaktan ziyade metamorfizma veya tektonik fazın yaşı olacaktır. Bir mineral izokronundan itibaren bulunan yasın kütlenin yası olduğunu iddia etmek için gayet sağlam arazi delillerine ihtivac vardır. Halbuki metamorfik veva tektonik etkenler altında homojenlesme (metasomatik durumlar haric). bütün kütlenin izotopsal yapısını değiştiremeyeceği için tüm kayaç örnekleri analizlerinden itibaren cizilen izokronlar kütlenin vasını belirliyebilir. Vachette et al. (1968) in çalışmasında izokron doğrusunun hesaplanmasında kullanılan analizler, bir tek örnek üzerinde yapılan tüm kayaç, plajioklaz, K-feldispat ve biyotit analizleridir. Bu analizlerden ilk üçü, birbirine fevkalade yakın izotopsal oranlar, bivotit ise tamamen farklı oranlar vermiştir. Böylece, bu araştırıcıların cizdiği izokron adeta bir tüm kavac-bivotit cifti izokronu haline gelmistir ki, bu izokron bir tüm kavac izokronunun verini alamaz.

Orhaneli granodiyoriti üzerinde yaptığımız izotopsal analizlerin sonuçları cetvel l'de verilmiştir.

 Örnek	^{Rb} ppm	Sr _{ppm}	⁸⁷ Sr/ ⁸⁶ Sr	⁸⁷ Rb/ ⁸⁶ Sr	Yaş M.Y.
17 B	302	72,2	0,7150	12,1	
17 T.K.	61,9	480,2	0,7068	0,37	48,5
18 B	387,7	54,0	0,7213	20,8	48,5
19 B	390,2	50,9	0,7235	22,2	52
20 B	432,7	45,7	0,7269	27,4	
 20 T.K.	71,9	340,0	0,7072	0,61	50

C ET V E L -I

B = Biyotit

T. K. = Tüm kayaç

λ⁸⁷Rb= 1,47x10⁻¹¹ sene⁻¹

⁸⁷Sr/⁸⁶Sr oranı direkt olarak kütle spektrometresinde ölçülmüş, Rb ve Sr ise evvelâ atomik absorpsiyon ile kontrol edilmiş, daha sonra izotopsal seyreltme metodu uygulanarak kütle spektrometresinde tayin edilmiştir.

Kuzeybatı Anadolunun çeşitli plütonik kütleleri özerinde yapılan (⁸⁷Sr/⁸⁶Sr) analizlerinde tüm kayaç örnekleri için 0,7060 ile 0,7089 arasında değerler elde edilmiştir. Bu kayaçların gayet küçük (⁸⁷Rb/⁸⁶Sr) oranlarından dolayı, ilksel (⁸⁷Sr/⁸⁶Sr) oranı 0,7065 olarak kabul edilebilir. Yukarıdaki 18 ve 19 No. lu biyotit örneklerinden itibaren yaşlar, ilksel (⁸⁷Sr/⁸⁶Sr)₀ =0,7065 kabul edilerek hesaplanmıştır.

Bu çalışmada elde edilen ortalama yaş 49,8 ± 1,3 M.Y. olarak kabul edilebilir; bu da Alt Eosen-Orta Eosen geçiş devresine tekabül eder: fakat bu sonucun kayacın yaşı olduğunu ileri süremeyiz. Burada ortaya konulan yaş Vachette et al. (1968)'de verilen 61 M.Y. den farklıdır. Aradaki fark, entrüzyon anındaki çevre kayaçlarının ısı iletkenliği ve muhtemel örtü tabakasının kalınlığı ile ilgili olarak granitik kütlenin çeşitli kısımlarının çeşitli hızlarla soğumasına bağlanabilir. Bununla beraber, şu hususu da unutmamalıdır ki Vachette et al. (1968) çalışmalarında bir tek örnek kullanmışlardır; halbuki burada alınan dört örnek Orhaneli granitik kütlesi üzerine dağılmış durumdadır ve bulunan yaşlardaki dağılım ise önemli sayılmaz. Alt Eosen-Orta Eosen yaşını saha gözlemlerine bağlı olarak izah etmeye çalışmakta büyük zorluk vardır; zira, saha çalışmaları yapmış araştırıcılar Kuzeybatı Anadolu granitik kütlelerinin yaşlarıhakkında anlaşmış değillerdir.

Sonuç olarak, arazi gözlemlerine dayanılarak ileri sürülen Paleozoyik yaş kabul edilirse, bu çatışmada bulunan 50 M.Y. Alp orojenezi sırasındaki şiddetli bir izotopsal homojenleşmeye (gençleşmeye) tekabül eder, eğer Tersiyer yaş doğru ise Orhaneli kütlesi için, birincil (primer) entrüzyon Paleosen yaşlı olarak kabul edilebilir.

Burada 50 M.Y. Sık bir jeolojik olayı kesinlikle tesbit etmiş bulunuyoruz, ancak bölgesel jeolojideki gözlemlerden dolayı iki muhtemel çözüm arasında katî bir seçim yapmak mümkün olmamıştır. Şu halde bu bölgede yaş münasebetlerini inceleyen ayrıntılı bir saha çalışmasının yapılması çok faydalı olur.

BIBLIYOGRAFYA

Aygen, T., 1956, Balya bölgesi jeolojisinin incelenmesi: M.T.A. Ens. Neş. D. 11.

- Okay, A.C. 1948, Orhaneli bölgesi, Mustafa Kemalpaşa bölgesi, Çataldağ bölgesine ait izahname 54/2, 54/1, 53/2 paftaları: M.T.A. Rap. No, 2215.
- Holzer, H., 1954, Beyce 54/4 ve Simav 71/1 paftalarının jeolojik löveleri raporu, M.T.A. Rap. No. 2366 (neşredilmemiştir).
- Kaaden, G. van der, 1958 ,Saadet-Mesruriye-Safa-Durabey-Domaniç-Tiraz-Saadet köyleri arasındaki sahanın W-Zn-Cu ve Uludağ silsilesi; Orhaneli ve M. Kemalpaşa güneyinde W prospeksiyonu ile bölgenin jeolojik durumu ve evalüasyonu: M.T.A. Rap. No. 2645.

_____, 1959, Anadolunun Kuzeybatısında yer alan metamorfik olaylarla magmatik faaliyetler arasındaki yaş münasebetleri: M.T.A. Bült., 52, 15-34.

- Kalafatçıoğlu, A., 1964, Balıkesir-Kütahya arasındaki bölgenin jeolojisi Türkiye Jeoloji Kurumu Bülteni, IX: 46-62.
- Vachette, M., Blanc, P. veDubertret, L., 1968, Determination de l'age d'une granodiorite d'Orhaneli, au Sud de Bursa (Anatolie); sa signification regionale: C. Rend. Ac. Sc. T. 267, Serie D. 927-930.

ORTHOKLAS-MIKROKLIN TRANSFORMATION IN MIGMATITEN DES EĞRİGÖZ-MASSIVS

(Eğrigöz Çevresi Migmatitlerinde Ortoklas-Mikroklin Transformasyonu)

O. Özcan Dora Ege Universität, Geologisches Institut.

ZUSAMMENFASSUNG

Im Gebiet des Eğrigöz-Massivs wurden die Mineralfazies der regionalen Metamorphose untersucht und festgestellt, dass die Metamorphose den Grad der Migmatisation erreichte. Das Auftreten der Indexmineralien Cordierit und Sillimanit in den hochgradig-metamorphen Serien beweisst, dass die regionale Metamorphose einen mittleren Typen zwischen Barrow und Abukuma einnimmt. Radioaktive Altersbestimmungen aus dem Arbeitsgebiet und Vergleiche mit Angaben aus anderen Teilen des Menderes-Massivs ergaben, dass die hochgradige, bis zu Migmatisation angestiegene Metamorphose postliassich, also frühalpidisch stattgefunden hat, dass aber das anatektische Eğrigöz-Massiv in die Deckschichten erst nach der Oberkreide eingedrungen ist.

Die röntgenographischen Messungen der durch schwere Lösungen angereicherten K-Feldspäte aus der höchstgradig regional metamorphen Zone zeigten, dass sie auf der von 1 bis 10 eingeteilten Hoch Sanidin-Maximum Mikroklin Tabelle der 4. Reihe und somit einem Strukturver-hältnis Or₆₀ oMi₄₀ entsprechen. Andererseits steigt der Albitgehalt im K-Feldspat bis zu 20 % an. Setzt man die ermittelten Werte in Diagramme ein, die aus Laborversuchen gewonnen wurden, so erhält man eine Transformationstemperatur von 500-550°C. Dieser Wert liegt aber weit unter der Migmatisationstemperatur von 680-700°C, die für eine hochgradige Metamorphose notwendig ist.

Es ist daher möglich, folgende Überlegungen als Alternativ-Vorschläge anzustellen : 1. Seit der letzten Metamorphose steigt derAl-Si-Ordnungsgrad der K-Feldspäte, d.h. ihre Triklinität erhöht sich.

2. Bei der letzten Aufheizung erreichte die Temperatur im Gebiet um 500-550°C.

Im Anbetracht der geologischen Verhältnisse scheint die zweite Überlegung einen höheren Grad der Wahrscheinlichheit zu haben. Es ist sehr Wahrscheinlich, dass bei dem Emporsteigen der Massive an der Kreide-Tertiärgrenze die Temperatur im Untersuchungsgebiet nur bis 500-550°C anstieg und die an den K-Feldspäten festgestellte Erhöhung der Al-Si-Ordnung (Orthoklas-Mikrolin-Transformation) zu dieser Zeit stattgefunden hat.

ÖΖ

Eğrigöz Masifi çevresindeki rejyonal metamorfizmanın mineral fasiyesleri incelenmiş ve metamorfizmanın migmatizasyon safhasına kadar yükseldiği saptanmıştır. Migmatitlere geçişte kordierit ve sillimanit indeks minerallerinin ortaya çıkması, rejyonal metamorfizmanın Barrovian ile Abukuma tipi arasında yer aldığını ispatlamaktadır. Bölgeye ait mevcut radyoaktif yaş tayinleri ve Menderes Masifinin diğer kesimlerinden elde edilen verilerle yapılan kıyaslamalar sonucu, migmatizasyona kadar ulaşan yüksek dereceli metamorfizmanın post liasik, erken alpin orojenik fazında vuku bulduğu, ancak anateksitik orijinli Eğrigöz Masifinin üst Kretase sonrası örtü tabakaları içine sokulduğu gösterilmiştir.

En yüksek dereceli metamorfik zondan alınan ve ağır sıvılarla zenginleştirilerek röntgenografik ölçü yapılan K-feldispatların, 1 den 10 kadar numaralanmış yüksek sanidin-maksimum mikroklin tablosunda 4. sırada yer aldıkları bulunmuş ve Or₆₀Mi₄₀ oranına uyan bir kafes strüktürü gösterdikleri saptanmıştır. Bulunan değerler deneysel incelemelerle hazırlanmış diyagramlara tatbik edildiğinde, 500-550°C lik bir transformasyon sıcaklığına ulaşılmaktadır. Bu değerler yüksek dereceli metamorfizma için zorunlu olan 680-700°C lik migmatizasyon sıcaklığının çok altındadır.

Bundan dolayı Eğrigöz Bölgesi için şu: iki alternatif fıkri ileri sürmek mümkündür:

1. Son metamorfizmadan bu yana K-feldispatların Al-Si dizilmelerinde yüksek düzene doğru bir gidiş vardır; yani triklinite dereceleri artmaktadır.

2. Son metamorfizmada bölge ancak 500-550°C lik bir ısınmaya maruz kalmıştır.

Jeolojik olaylar dizisi ışığında ikinci yaklaşım mantığa daha yakındır. Kretase-Tersiyer sınırında vuku bulan masiflerin yükselmesinde, bölgenin ancak 500-550°C ye kadar ısınmış ve K-feldispatlarda saptanan Al-Si düzeni artışının (ortoklas-mikroklin transformasyonu) meydana gelmiş olması kuvvetle muhtemeldir.

EINFÜHRUNG

Wenn man das Blatt İzmir der geologischen Karte der geologischen (1:500 000) betrachtet, fällt sofort auf, dass aus kristallinen Gesteinen aufgebaute Menderes-Massiv sich nördlich des Gediz-Grabens (im Altertum Hermos) in Form von einzelnen Fetzen bis zum Süden des Vilayets Kütahya fortsetzt. Den NW liehen Rand dieses einheitlichen Komplexes bildet die mesozoische Izmir-Ankara Zone Brinkmann's (1966). Im genannten Bereic des Massivs treten mehrere granitische Körper auf (Anlage I). In der vorliegenden Untersuchung wurde die genetische Beziehung der beiden granitischen Körper nördlich von Simas der Karakoca-und Eğrigöz-Massive mit der regionalen sowie Kontakt-Metamorphose näher erläutert.

Die ersten detaillierten geologischen und petrographischen untersuchungen der Eğrigöz-und Karakoca-Massive wurden bei der geologischen Aufnahme der Blätter Simav 71-1 und 71-2, 1:100000 durch Zeschke (1953) und Holzer (1954) vorgenommen. Nach Holzer hat der Granit die oberkretazischen Kalke kontaktmetamorph beeinflusst. Deswegen nimmt er als Alter der Intrusionen den Zeitraum um die Wende Oberkreide-Tertiär an.

Bürküt (1966) bestimmte mit der U/Pb Methode das Alter des Eğrigöz-Granits als 69,6 + 7 millionen Jahre. Dagegen kam Öztunalı (1967) durch Anwendung mehrere Methoden (Rb/Sr etc.) auf 160 millionen Jahre. Dora (1969) konnte die anatektische Enstehung des Karakoca-Massivs nachweisen und nahm für die Anatexis der Metamorphite ein postliassisches, frühalpidisches Alter an. Nach Dora (1969) besteht zwischen der Anatexis und der Intrusion der Massive in die Deckschichten ein Zeitintervall von fast 100 millionen Jahren.

GEOLOGIE UND PETROGRAPHIE

In der Übersichtskarte von Westanatolien (Anlage I) wurden die metamorphen Glieder des Menderes-Massivs sowie die mesozoische IZMIR-ANKARA-Zone Brinkmann's (1966) aufgetragen. Bei einer kritischen Betrachtung fällt sofort die konzentrischschalige Ausbildung der einzelnen, kleinen metamorphen Dome im Rahmen des Menderes-Massivs auf. Das untersuchte Gebiet stellt auch einen von diesen hochgradig metamorphen Domen dar.

Die Granitstöcke von Eğrigöz und Karakoca bilden eine in NNE Richtung gestreckte, hufeisenähnliche Form, die aus zwei Teilantiklinalen besteht. Die Granite werden von einer metamorphen Decke, die heute bis auf 4-5 km. Mächtigkeit verdünnt ist, überlagert. Die höchstgradig-metamorphosierten, unteren Einheiten dieser Decke sind an günstigen Stellen 2 km. mächtig aufgeschlossen. Öfters hat der Granit auch mit den niedergradigen Metamorphiten oder mit den nicht metamorphen Serien direkte Kontakte. Dieses Auftreten des Granits in verschiedener geologischen Umgebung hat sicher mit den sich so verschiedenen radioaktiven Altersbestimmungen einen ursächlichen Zusammenhang. Auf den genannten Zusammenhang weisen auch die Ergebnisse der Feldspatsmessungen hin.

Die höchsten Partien der niedriggradig-metamorphen Grünschiefer bestehen aus den Marmoren und Kalkschiefern (Anlage 2). Die Marmore enthalten die Mineralien der **Quarz-Calcit-Muskovit-Tremolit-Subfazies**, während in den Kalkschiefern die **Quarz-Calcit-Albit-Muskovit-Subfazies** angetroffen wird. Marmore sind massig bis dickbankig und grobkörnig. Ihre Farbe wechselt von schwarz bis rein weiss. Die Kalkschiefer treten in dünnen Bänken auf und sind auch grobkörnig. Dagegen haben sie meist hellere Farben. Sowohl die Marmore als auch die Kalkschiefer bis zur **Hornblende-Hornfelsfazies** kontakmetamorph verändert.

In den alumino-silikatreichen Gliedern der Grünschieferfazies wird als Erste die Ouarz-Albit-Muskovit+Chlorit + Calcit-Subfazies angetroffen. Die Mineralien sind synkinematisch aufgewachsen (Tf. I. Photo 1). Entlang einer zweiten Schieferung, die sich makroskopisch sichtbar macht, sind jüngere Muskovit-Il-Kristalle gesprosst. Wegen der nur geringen optischen Unterscheidungsmerkmale zwischen Pyrophyllit, der in niedrigmetamorphen, Al₂O₃-reichen pelitischen Sedimenten zu erwarten ist, und Muskovit(2Va von Muskovit 30-47°, 2 V a von Pyrophyllit 53-62°, Deer, Howie and Zussman, 1966) ist eine eindeutige Identifizierung des Pyrophyllits im Dünnschliff nicht möglich. Deshalb wurden von den durch eine Schwereflüssigkeit (Bromoform: Benzol = 8:1, d = 2,66 gcm⁻³ bei 20°C) angereicherten Phyllosilikaten röntgendifraktometrisch Diagramme angefertigt. Nur wurde bei den 20 Glanzwinkeln, wo die Peakwerte von Pyrophyllit zu erwarten waren, keine Reflexe registriert. Es waren sehr deutlich die Peakwerte von Muskovit und Chlorit zu lesen. Dies ist sicher mit dem Kalireichtum der Gesteine zu erklären

Unter der obengenanten Fazies folgt die Quarz-Albit-Biotit-Muskovit+Chlorit-Turmalin ± Klinozoisit-Subfazies. Sie wird durch das Auftreten des Biotits charakterisiert. Bei den mergeligen Lagen wurde die Calcit-Muskovit-Tremolit ± Quarz-Subfazies gebildet.

In der nächsten höhermetamorpen Subfazies der Grünschieferfazies treten zum ersten Mal idiomorphe Granate auf, die möglicherweise: aus der Reaktion:

Chlorit + Biotit A + Quarz \rightleftharpoons Almandingranat + Biotit B + H₂O entstanden sind (Tf.I, Photo 2). Die Paragenese dieser Subfazies ist Quarz-Albit-Biotit-Granat ± Chlorit+Epidot.

Wenn man die drei auftretenden Subfazies des Untersuchungsgebietes mit den Subfazies des Barrowtypus vergleicht, stellt man bei einer flüchtigen Betrachtung eine merkliche Koinzidenz fest. Dies ist aber nur eine trügerische Ähnlichkeit. Denn die eigentlichen Hochdruck-und Niedertemperaturmineralien, wie Chloritoid und Stilpnomelan, die den Barrowtypus charakterisieren, wurden nicht angetroffen. Bei den hochgradigmetamorphen Einheiten tritt dieser Unterschied noch deutlicher in Erscheinung. Der Übergang zur Almandin-Amphibolitfazies macht sich mit dem Auftreten von Hornblende, Diopsid und Plagioklas bemerkbar. Bei den mergeligen Lagen wurde die Quarz-Calcit-Diopsit Grüne Hornblende- Plagioklas (An % 30) ± Epidot ± Biotit ± Turmalin ± Sfen Mineralparagenese beobachtet. Dagegen liefern die kalireichen Edukte die Quarz-Plagioklas-Biotit-Granat+Turmalin-Subfazies. Obwohl der selten auftretende Granat vom Gestein nicht separiert und von ihm keine Röntgenaufnahmen gemacht werden konnte, muss es sich hier um spessartin-reichen Granat handeln, da der Druck-wie wir noch wahrscheinlich machen werden-um 3000 Bar herum lag.

In der zweiten Subfazies der Almandin-Amphibolit-Fazies tritt das genetisch aussagende Mineral Cordierit auf. Die Quarz-Biotit-Cordierit- Kalifeldspat-Granat+Turmalin-Subfazies wird nur in einigen hundert Metern beobachtet. Im Gebiet ist die in Winkler (1966, 1967) angegebene Reaktion:

 $\begin{array}{l} \mathsf{Muskovit} + \mathsf{Biotit} + \mathsf{SiO}_2 \overrightarrow{\leftarrow} \mathsf{Cordierit} + \mathsf{Kalifeldspat} + \mathsf{H}_2\mathsf{O} \ \mathsf{6KAl}_2\\ [\mathsf{Si}_3\mathsf{AlO}_{10}] \ (\mathsf{OH})_2 + 2\mathsf{K} \ (\mathsf{Fe}, \ \mathsf{Mg})_3 \ [\mathsf{SiAl} \ \mathsf{O}_{10}] \ (\mathsf{OH})_2 + 15\mathsf{SiO}_2 \overrightarrow{\leftarrow} 3(\mathsf{Mg}, \ \mathsf{Fe})_2\\ \mathsf{Al}_3 \ [\mathsf{Si}_5 \mathsf{AlO}_{18}] + 8\mathsf{KAlSi}_3\mathsf{O}_8 + 8\mathsf{H}_2\mathsf{O} \end{array}$

abgelaufen (Tf. II, Photo 1). Denn der Muskovit ist ganz verschwunden und der Biotit ist teilweise vom neuentstandenen Cordierit verzehrt worden.

Die höchstgradige Subfazies ist durch die Mineralparagenese von Quarz-Feldspat-Plagioklas (An % 36) - Cordierit-Sillimanit-Blotit ± Muskovit vertreten (Tf. II, Photo 2). Sillimanit wird nur in den, bis zur Teilschmeizung erhitzten Migmatiten beobachtet. Er ist wahrscheinlich durch die von Okruch (1969) auch in Metamorphiten von Steinach in der Oberpfalz festgestellte Reaktion :

Muskovit + Quarz (+ Biotit) ← K-Feldspat + Sillimanit +H₂O (+Biotit) entstanden. Bei der regionalen Metamorphose wurde als Zwischenglied kein Andalusit ausgeschieden. Dagegen tritt Andalusit, wie wir später erwähnen werden, in den Kontaktmetamorphen Fazies auf. Für die Bildung des Sillimanits ist in bestimmten Gebieten auch die folgende von Guidotti (1963) vorgeschlagene Reaktionsgleichung denkbar: Muskovit + Quarz + Na-reicher Plagioklas ZNa-haltiger K-Feldspat+ Ca-reicher Plagioklas+AI-Silikat (Sillimanit) + H₂O

In Dora (1969) wurde bereits auf die zweite Reaktion hingewiesen. Die röntgenographischen K-Feldspatsmessugen bestätigen jetzt (s. Kapitel Feldspatsuntersuchungen) diese Annahme.

Wenn die regionalmetamorph entstandenen Mineralien des Egrigöz-Karakocagebites einer kritischen Bewertung unterzogen wird, fällt sofort auf, dass die typischen Hochdruck-und Hochtemperaturmineralien nicht Vorkommen. Sie sind in erster linie in der Grünschieferfazies Stilpnomelan und in der Almandin-Amphibolitfazies Disthen. Das Fehlen von Chloritoid und Staurolith sollte nicht sehr viel bedeuten, da die beiden Mineralien nur bei dem geigneten Gesteinschemismus auftreten. Dagegen kann das Fehlen von Disthen in diesem Gebiet für die genetische Interpretation herangazogen werden. Denn er ist aus den südlichen Teilen des Menderes-Massivs, wo eine regionale Metamorphose vom Barrowtypus angenommen wird, mehrfach beschrieben (Schuiling 1962, İzdar 1971). Diese Tatsache und das Auftreten von Cordierit, der bis jetzt im Menderes Massiv nur in der Arbeit von Öztunalı (1965) als ein vermutliches Mineral beschrieben war, berechtigen uns hier eine intermediäre metamorphe Fazies enzunehmen. Die PT-Bedingungen der Metamorphose musste zwischen den Werten der Barrow-und Abukuma-Typen liegen. Diese Annahme wird auch durch die Beobachtung bekräftigt, dass die Mächtigkeit der in situ erhaltenen Serien der Almandin-Amphibolitfazies nirgends 3 km. überschreitet. Wenn man bedenkt, dass auch die Serien der Grün- Schiefer 3 bis 4 km. Mächtigkeit haben sollten, da sie die Entstehung der Hochdruck-Mineralien in den darunter liegenden Serien nicht verursachen könnten, ergibt sich fürs Gebiet eine Gesamtmächtigkeit von 6-7 km zur Zeit der regionalen Metaborphose. Unter diesen Umständen herschte höchswahrscheinlich ein Belastungsdruck $(P_1 = P_{H_{20}} \text{ von 2 bis höchtens 3 kb vor. Wie die höcshstgradigen})$ Fazies beweisen, müssen aber die Temperaturen um die Schmelzgrade der anateiktischen Schmelzen liegen. Es können aber Temperaturen von 680-700°C nicht überschritten werden, da bei obigen Anatekiskurve um diesese Temperaturen überschneidet (Winkler 1966). Daraus ist zu ersehen, dass die Gneise bei mittieren Drucken schmelzen können, bevor noch die höchstgradigen Subfazies der Almandin-Amphibolitfazies erreicht ist. Im Gebiet begann die partielle Schmelzung noch in Anwesenheit von Muskoit in der **Cordieritzone** und erreichte schliesslich in der **Sillimanitzone** ihren höchsten Wert.

In dem Zwischengebiet, wo die Eğrigöz-und Karakoca-Granitmassive sich auf 2 bis 3 km. nähern, ist die anatektische Entstehung der Massive sehr deutlich festzustellen. Hier verliert sich der scharfe Kontakt zwischen dem Granit und den höchstgradigen Metamorphiten, Es wird ein allmählicher und kontinuierlicher Übergang der metamorphen Glieder der Almandin-Amphibolitfazies in die Migmatite und Granite beobachtet. Die durch partielle Schmelzung entstandenen granitischen Schmelzen wanderten in diesem Gebiet nicht weiter und erstarrten in situ. Deswegen sind auch keine Kontaktwirkungen anzutreffen. Die petrologischen Reaktionen der erwähnten Anatexis ist im einzelnen aus der Arbeit Dora (1969) zu entnehmen.

Die granitischen Schmelzen blieben und erstarrten aber nicht immer an Ort und Stelle. Insbesondere entlang der NNE gerichteten Antiklinalachsen stiegen sie empor und drangen in die niedergradigeren Metamorphite ein. An diesen Stellen wurden schmale (höchstens 2-400 m Breite) Kontakthöfe gebildet. Die kontaktmetamorphen Fazies überschreiten nirgends die Hornblende-Hornfelsfazies. Bei den mergeligen Lagen wurde die **Quarz-Calcit-Andradit-Diopsid-Subfazies** gebildet. Bei den alumino-siliziumrelchen Gliedern entsteht aus Muskovit öfters die Andalusit führende Subfazies (Tf. III, Photo 1).

Nach den Arbeiten von Wippern (1964), Brinkmann (1966-1971), Başarır (1970) und İzdar (1971), die südlichen Teile des Menderes-Massivs behandeln, gehört die letzte Metamorphose, die als «Hauptkristailisation» bezeichnet wird, der postliassischen Phase der frühalpidischen Orogenese an. Başarır (1970) berichtet, dass die Migmatisation und die Augenbildung der Gneise dieser letzen Metamorphose zuzuschreiben sind. Auch im untersuchten Gebiet weisen die radioaktiven Altersbestimmungen auf ein postliassisches Alter der Metamorphose hin. Nur erscheinen die sehr verschiedenen Altersdaten auf den ersten Blick etwas verwirrend. Aber wenn man sie mit den geologischen Gegebenheiten kombiniert, wird eine logische Erklärung leichter ersichtlich. Die 160 millionen Jahre, die von Öztunalı (1967 berechnet wurden, stimmen mit der oben genannten «Hauptkristallisation» des Menderes-Massivs überein. Die von Bürküt (1966) berechneten 69 millionen Jahre würden mit den Beobachtungen Holzer's(1954) zusammenpassen, wonach die Granitintrusion die oberkretazischen Kalke beeinflusst haben soll. Wie bei den radioaktiven Altersbestimmungen öfters der Fall ist, wurden hier sehr wahrscheinlich zwei verschiedene Kristallisationakte fixiert: Einmal die Hauptmetamorphose, zum Zweiten die Granitintrusionen. Es ist auch nicht sehr verwunderlich-wie oft von Read (1957) beschieben ist., dass hier zwischen der Entstehung der granitischen Schmelze und Platznahme ein Zeitintervall von etwa 100 millionen Jahren besteht. Besonders wurden von palingenen Graniten diese lange Erstarrungszeit bekannt. Damit gehört die Hauptmetamorphose, die bis zur Anatexis und Granitisation führte, wie in den südlichen Abschnitten des Menderes Massivs, der frühalpidischen Phase an. Dies steht ausserdem mit den geologischen Fakten überein, dass in der nächsten Umgebung niemals nichtmetamorphe Trias und Lias beschrieben wurden. Die ältesten nichtmetamorphen Serien in der Umgebung von Tavşanlı gehören nach Kaya (1972) dem Jura an.

Das Menderes-Massiv verdankt seine Entstehung sicher nicht einem einzigen Metamorphoseakt. Es wurde sicher durch die varistische und möglicherweise bir präkambrische Orogenesen beinflusst und mehrmals metamorphisiert. Dies ist in den verschiedenen Fältelungsrichtungen zu ersehen. Die Achsenrichtungen der letzten Metamorphose ist NNE. Deswegen weichen die Meinungen über das Alter und die Edukte des Menderes-Massivs auseinander. Für die Paraentstehung der Gneise wurden von anderen Teilen des Massivs gute Beispiele beschrieben (Schuiling, 1958, 1962). Auch im untersuchten Gebiet wurden sehr eindeutige Hinweise auf die pelitisch-psammitsche Zusammensetzung der Edukte erhalten. Neben dem wechselnden Charakter der Gneise in Chemismus und Korngrösse haben Zirkone und Apatite noch ihre alte sedimentäre Anhäufungen beibehalten (Dora, 1969, 1971). Ausserdem lassen die Titanitreste die alte sedimentäre s, noch erkennen (Tf. III, Photo 2).

FELDSPATUNTERSUCHUNGEN

Seit zwanzig Jahren wurde die Mikroklin-Orthoklas-Transformation der Kalifeldspäte für die Einteilung der regionalmetamorphen Gebiete in die Grünschiefer-und Almandin-Amphibolitfazies herangezogen. Diese beiden chemisch-gleichzusammengesetzten Feldspäte zeigen je nach ihrer Si-Al Verteilung, die geordnet oder ungeordnet sein kann, trikline und monokline Kristallstruktur. Diese Symmetrieän derung in der Struktur kann durch die U-Tischmessungen und die Röntgenuntersuchungen sehr leicht festgehalten werden. Da ein kontinuierlicher Übergang besteht, wird im allgemeinen von der Triklinität der K-Feldspäte gesprochen.

Nach den Diagrammen, die von Wrigt and Stewart (1968) vervollständigt wurden, kann die Kristallmodifikation sowie die chemische Zusammensetzung der K-Feldspäte mit genügender Genauigkeit bestimmt werden. Nur benötigt diese Methode langwierige Berechnungen und ausgearbeitete Komputerprogramme. Dagegen ist die drei Peaksmethode, die von Wright (1968) vorgeschlagen wurde, praktischer und einfacher. Diese Methode beruht darauf, dass zwischen den a, b, c,- Parametern des Kristalls und den $(\overline{2}01)$, (060) und $(\overline{2}04)$ Peakwerten eine gerade Proportionalität besteht. Gegebenfals können noch die Peakwerte von (002) und (113) herangezogen werden, um den Glanzwinkel von ($\overline{2}04$) genau zu ermitteln. In einem Diagramm, wo die 2θ Werte für die (204) und (060) Flächen als Koordinaten eingetragen sind, reihen sich die Syntheseprodukte der Hoch Sanidin-Hoch Albit, P50-56 Orthoklas und Maximum Mikroklin-Tief Albit Serien entlang der Geraden mit positiver Korrelation auf. Wenn die Glanzwinkelwerte der ($\overline{2}04$) und (060) Flächen in dieses Koordinatensystem eingetragen werden, kann man leicht die Stelle des Untersuchten K-Feldspats mit der Triklinitätstabelle, die in Wright and Stewart (1968) zusammengestellt ist, vergleichen und den Triklinitätsfaktor ablesen.

Bei den normalen K-Feldspäten, die zwischen den gemessenen und aus dem Diagramm gelesenen ($\overline{2}$ 01) Werten eine Abweichung von höchstens 0,1 haben, steht der Orthoklasgehalt mit den ($\overline{2}$ 01) Werten im linearen Verhältnis, wobei die Korrelation der Gerade negativ ist. Die Zusammensetzung dieser normalen K-Feldspäte kann damit aus den 20 Werten der ($\overline{2}$ 01) Flächen direkt abgelesen werden.

Die lonenaustauschexperimente an Alkalifeldspäten sowie die Berechnungen mit Hitzeflussmodellen ergaben, dass die Triklin-Monoklin-Transformation der K-Feldspäte bei 400-450°C erfolgten. Orville (1963) stellte fest, dass die Transformationstemperatur sich mit dem Albitgehalt der K-Feldspäte ändert. Während die reinen K-Feldspäte die Modifikationsänderung bei 400°C zeigen, benötigen die albithaltigen Glieder Temperaturen bis zu 550°C.

Abb. 1. Das (060) - (204) Diagram der drei kompletten Alkalifeldspatserien (Nach Wright 1968). Die Eğrigöz-Proben haufen sich um P50-56 Orthoklasserie.

Wenn wir den Strukturzustand der K-Feldspäte aus regiönalmetamorphen Gebieten ermitteln können, werden wir in der Lage sein, über die Temperatur der Metamorphose genauere Angaben zu machen. In dieser Untersuchung wurden die Proben aus der höchstgradigen Zone des Eğrigöz-Karakoca-Gebietes zermahlen und die K-Feldspäte- wurden durch schwere Flüssigkeiten aus dem. Gesteinspulver angereichert und anschliessend unterdem Binokular aufgelesen. Die an Feldspäten angereicherten Proben wurden im Achatmörser sehr fein gemahlen und dreimal zwischen den 20 Werten von 20 bis 60° difraktometrisch vorwärts und rückwärts gelaufen. Die 20 Mittelwerte (Tabelle 1) für die Flächen (060), (204) und ($\overline{2}$ 01) wurden in die Abb.1 und 2 eingetragen. Aus Abb. 1 kann man sehen, dass die Proben sich um die

142

P50-P56 Orthoklas-Serie häufen. Die Proben mit den Nummern 7015, 7043, 7134, 7139 und 7177 liegen auf der Maximum- Mikroklin-Tief Albit Seite und die mit den Nummern 7163, 7165 und 7181 auf der Hoch Sanidin-Hoch Albit Seite der erwähnten Orthoklaslinie. Nur erscheint die Probe mit der Nummer 7133 auf der Hoch Sanidin-Hoch Albit-Linie. Auch 2V_x Bestimmung der Proben mit dem Universaldrehtisch ergaben Werte, die den Triklinitätsgrad der Proben entsprechen. Nur, wie auch in Laves and Viswanathan (1967) dargelegt wurde, zeigen die 2V_x Werte mancher dem Gleichgewichtszustand nicht erreichten (unstabilen) K-Feldspäte bis zu 20° Unterschiede in gleichen Proben. Die optische Achsenänderung der K-Feldspäte im Eğrigöz-Region wird systematisch in einer getrennten Arbeit behandelt.

Die auf dem Diagramm eingetragenen Proben entsprechen in einer von 1 bis 10 eingeteilten Maximum Mikroklin-Hoch Sanidin Tabelle (Wright and Stewart 1968) dem 4. Rang. Die Al-Si-Ordnung repräsentiert ert ein Orthoklas-Mikroklin Verhältnis von Or₆₀Mi₄₀. Die Trennung der zu den 131 und 131 Flächen gehörenden Peaks erfolgten erst ab einem Orthoklas Mikroklin Verhältnis von Or₆₀Mi₄₀. Dann kann die Triklinität nach der Gleichung D = 12,5 d (131)– (131) berechnet werden (Goldschmidt und Laves, 1954). Da das Orthoklas-Mikroklin Verhältnis der untersuchten Proben den erwähnten Mindestwert kaum überschritten, wurde in den Difraktometerdiagrammen diese Peaktrennung nicht beobachtet.

Auf der anderen Seite kann das Mischungsverhältnis Orthoklas- Albit aus dem Diagramm, das auf den Peakwert von ($\overline{2}01$) Flächen aufgestellt ist, abgelesen werden (Wright 1968). Die untersuchten Proben des Eğrigöz-Karakocagebietes hatten einen Albitgehalt von bis zu 20 %.

DISKUSSION DER ERGEBNISSE

Unter dem für das untersuchte Gebiet angenommenen Druck von 2-3 kb. musste die Übergangstemperatur von der Grünschieferfazies zur Almandin-Amphibolitfazies um 500°C liegen. Da die K-feldspathaltigen Proben aus der höchstgadig-metamorphen Serien(Migmatiten) der Almandin-Amphibolitfazies stammten, mussten sie weit über die genannte Temperatur hinaus erhitzt

Abb. 2. Für drei kompletten Alkalifeldspatserien sind (201) 20 Werte gegen Orthoklasgehalt aufgetragen (Wright 1968). Die untersuchten Proben enthalten bis zu 20 % Albit. Die Signaturerklärungen sind wie in Abb. 1.

sein. Wie oben ausführlich berichtet wurde, wurden sie Temperaturen von mindestens 680°-700° unterworfen.

Abb. 3. Die Änderung der Temperatur der Mikroklin-Orthoklastransformation durch Ab-Gehalt (nach Orville 1963 und Wright 1967). Die untersuchten Proben zeigen Umwandlungstemperaturen um 500°C.

Ein Vergleich der Kristallisationstemperaturen der Kalifeldspäte, die aus den phasenpetrologischen Untersuchungen und aus Röntgen-diagrammen ermittelt wurden, zeigt, dass zwischen beiden Werten eine grosse Differenz besteht. Für die Al-Si Ordnung, die im Gebiet nachgewiesen ist, kann die Umwandlungstemperatur den Wert von 400 - 500°C nicht überschreiten. Diese Werte wurden durch Hitzeflussberechnungen (Steiger and Hart 1967) und durch Syntheseuntersuchungen (Tomisaka 1962; Orville 1967) bestätigt. Wenn wir noch den Albitgehait der untersuchten Proben, der bis zu 20 % ansteigen kann, in Betracht ziehen, können Translationstemperaturen von 500-550°C angenommen werden, da nach Orville (1963) und Wright (1967) dieser Albitanteil die Umwandlungstemperatur um 100°C erhöht (Abb. 3). Scotford (1969) stellte südlich von Ödemiş im Menderes-Massiv in den Metamorphiten der Grünschieferfazies Augengneise fest und ermittelte durch Triklinitätsmessungen für die Kalifeldspäte die Entstehung der K-Feldspäte in einer fremden Umgebung durch K-Metasomatose. Nur sind im Eğrigöz-Gebiet Spuren einer Metamorphose im Sinne Scotford's nicht abzuiesen. Hier werden die K-feldspatführenden Fazies allein in den höchstgradigen Metamorphiten angetroffen. Vielmehr können für das untersuchte Gebiet zwei alternativ-Überlegungen angestellt werden.

1. Seit der letzten Metamorphose (Emporsteigen der Granite) steigt der Al-Si Ordnungsgrad der K-Feldspäte, d.h. ihre Triklinität erhöht sich.

2. Bei der letzten Aufheizung erreichte die Temperatur im Gebiet nur 500 - 550°C.

Die Untersuchungen in grossen regionalmetamorphen Gebieten der Erde bestätigen, dass beide erwähnten Überlegungen gültig sein können. Z.B. fand Marmo et al. (1963) heraus, dass die präkambrischen Gneise und Granite sehr viel Mikroklin enthielten. Er begegnete aber an unerwarteten Stellen der ausserordentlich niedrigen Triklinität der Kalifeidspatsporphyroblasten. Deswegen ist bis jetzt die Erhöhung der Triklinität mit der Zeit eindeutig nicht bewiesen worden. Für das untersuchte Gebiet kann die Erhöhung des Triklinitätsgrades der K- Feldspäte nach der letzten Metamorphose nicht in Betracht gezogen werden, da die letzte Aufheizung sehr jung, d.h. laramisch war.

Die zweite Überlegung wird den Tatsachen im Gebiet eher gerecht. Wie oben auseinandergesetzt, wurde das Gebiet frühalpidischpostliassich einer hochgradigen Metamorphose unterworfen. Die letzte Aufheizung fand beim Emporsteigen der anatektisch entstandenen Granit-Massive in die höheren Stockwerke an der Wende Kreide Tertiär statt. In dieser Phase wurde das Gebiet ausserhalb des kontakthofs, der ummittelber mit intrudierten Graniten in Berührung kam und entsprechend kontaktmetamorph umgewandelt war, bis zu 500-550°C erhitzt. Somit wurden in der frühalpidischen Phase entstandenen K-Feldspäte retrograd metamorphisiert, d.h. ihre Triklinität hat sich erhöh. Auch Scotford (1969) nimmt für die merklich triklinen K-feldspäte der Kerngneise des Menderes-Massivs, die nördlich von Ödemiş liegen, eine gleiche retrograde metamorphose an. Seine Messungen an diesen K-Feldspäten ergaben auch Enstehungstemperaturen von 500-550°C. Er gibt aber hier als Ursache eine ganz junge K-Metasomatose an. Dagegen haben im untersuchten Gebiet allein die jüngeren Granitintrusionen die genannte retrograde Metamorphose verursacht.

Prof. Dr. R. Brinkmann (İzmir) möchte ich für die wertvollen Diskussionen sowie das fördernde Interesse an dieser Arbeit meinen herzlichen Dank aussprechen. Zu grossem Dank bin ich auch dem Institutsmitgliedern, die bei praktischen Arbeiten mir sehr behilflich waren, verflichtet.

LITERATURVERZEICHNIS

- Başarır, E., 1970 : Bafa Gölü doğusunda kalan Menderes Masifi güney kanadının Jeolojisi ve petrografisi.—Scien. Rep. of. Fac. of scien, Ege Univ, No: 102, İzmir.
- Brinkmann, R., 1966 : Geotektonische Gliederung von Westanatolien.—N. Jb. Geol Pal. Mh. 603-618, 6 Abb.
 - _____, 1967 : Die Südflanke des Menderes-Massivs bei Milas, Bodrum und Ören.—Scien. Rep. of Fac. of Scien., Ege Univ., No: 43, Izmir.

_____, 1971 : Das kristalline Grundgebirge von Anatolien.—Geol. Rundschau, Bd. 60, 886-899.

- Bürküt, Y., 1966 : Kuzeybatı Anadolu'da yer alan plütonların mukayeseli jenetik etüdü.—İ.T.Ü. Maden Fak. Yayını, İstanbul.
- Deer, W.A., R.A. Howie, and J. Zussman, 1966 ; An introduction to the rock forming minerals.—London: Longmans.
- Dora, Ö.O., 1969 : Petrologische und metallogenetische Untersuchungen im Granitmassiv von Karakoca.—Bull, of the Min. Res. and Expl. Inst, of Turkey, No: 73, .10-26.

, 1971 : Kontakt-metasomatik ve hidrotermal çinkoblend yatakları ile bağıntılı olarak Fe-Zn-S sisteminin mineralojik incelenmesi.— Scien. Rep. of Fac. of Scien., Ege Univ. No: 122.

Goldsmith. R.J. and Laves, F., 1954 : The microcline-Sanidine stability relations.— Geochim et Cosmochim. Acta, V-5, 1-19.

Guidotti, C.V., 1963 ; Metamorphism of the pelitic schists in Bryan Font

Quadrangle, Maine.-Am. Mineralogist 48, 991-1023.

- Holzer, H., 1954 : Beyce 54/4 ve Simav 71/2. paftalarının jeolojik löveleri raporu.— M.T.A. Rap. No: 2366 (Yayınlanmamış), Ankara.
- İzdar, E., 1971 : Introduction to geology and metamorphism of the Menderes Massiv of western Turkey.—Geology and History of Turkey, Ed. Angus S. Campbell, Pet. expl. Soc. of Libya, 495-500.
- Kaya, O., 1972 : Tavşanlı yöresi ofiolit sorununun ana çizgileri.— Bull. of. the geol. Soc. of Turkey. V XV, No: 1, 26-108.
- Laves, F. and Viswanathan, K., 1967 : Relations between the optic axial angle and triclinicity of potash feldspars, and their significance for the definition of «stable» and «unstable» states of alkali feldspars.— Schweiz. Min. Petrogr. Mitt, t, 47, 147-161.
- Marmo, V., Hytönen. K., and Vorma, A., 1963 : On the occurrence of potash feldspars of inferior triclinicity within the Precambrian rocks in Finland. Compt. Rend. Soc. Geol. Finlande, 221: 34.
- Okrusch, M., 1969 Die Gneishornfelse um Steinach in der Oberfalz. Eine Phasenpetrologische Analyse.—Beitrage zur Mineralogise und Petrologie, V. 22, No: 1, 32-72.
- Orville, M.P., 1963 : Alkali ion exchange between vapor and feldspar phases – Am Journal of science, V. 261, 201-237.

_____, 1967 : Unit-cell parameters of the microcline-low albite and thesanidine-high albite solid solution series.—The Am. Mineralogist, V. 52. No: 1-2, 55-86.

- Öztunalı, Ö., 1965 : Petrographie und Entstehung der Uraniumvorkommen der Umgebung von Demirtepe-Çavdar und Osmankuyu-Kısır (Çine-Massiv). —Bull. of the Min. Res. and expl. Inst, of Turkey. No, 65, 119-132.
 - ____, 1967 . Flabilitationsarbeit. (Im Druck).
- Read, H.H., 1957; The granit controversy. Murby, London, 430 pp.
- Schuiling, R. D., 1958 A zirkon-study of an augengneiss in the Menderes massive, –Bull of the Min. Res. and expl. Inst of Turkey, No: 51.
 - _____, 1962 : On the petrology, age and structure of the menderes migmatite complex. Bull. of the Min. Res. and exph Inst of Turkey, No: 59, 71-84.
- Scotford, M.D., 1963 : Metasomatic augen gneiss in greenschit fasies,

western Turkey., Geol. Soc. of America Bull., V, 80, 1079-1094.

- Steiger, H.R. and S.R. Hart, 1987 : The microcline-orthoclase transtion within a contact aureole.—The Am. Mineralogist, V. 52, No: 1-2, 87-116.
- Tomisaka, T., 1962 ; On order-disorder transformation and stability range of microcline under high water vapour pressure —Mineralogical Journal, V. 3, No. 5-6, 261-281.
- Wjppern, J., 1964 : Die Stellung des Menderes-Massivs in der alpidischen Gebirgs- bildung.—-Bull. of the min. ros. and expl. Inst, of Turkey, No- 62.
- Winkler, H.G.F., 1966 : Der Prozess Anatexis: Seine Bedeutung für die Genese der Migmatite.—Tschermaks Min. u. Pet. Mitt. Bd, XI, H, 3-4 236-287.
 - _____, 1967 : Petrogenesis of metamorphic rocks—Springer-Verlag. Berlin.Heidelberg. New York.
- Wright L.T., and D.B. Stewartr 1988 : X-Ray and optical study of alkali feldspar, I. Determination of composition and structural state from refined unitcell parameters and 2V.—The Am. Mineralogist, V. 53, No: 1-2, 38-87.
- Wright, L.T., 1967 : The microcline-orthoclase transformation in the contact aureole of the Eldora Stock; Colorado.—The Am. Mineralogist, V. 52, Nos. 1-2, 117-137.
 - _____, 1968 : X-Ray and optical study of alkali feldspar: II. An X-ray method for determining the composition and structural state from measurement of 20 values for three reflections.—The Am. Mineralogist, V. 53, No: 1-2, 88-104.
- Zeschke, G., 1953 : 1953 yaz mevsimi löveleri raporu. M.T.A. Rap. No, 2249 (Yayınlanmamış), Ankara.

O. Özcan Dora

Photo 1. Quarz-Albit-Muskovit-Schiefer

Synknematische Muskovit I-Kristalle (schwarz und horizontal) zeigen Fältelungen; postkristalline Muskovit II-Kristalle sind entlang der s₂-Schieferung, die s₁ mit einem Winkel ca. 35° schneidet, angeordnet. Unten Chlorit (dunkelgrau). 35X, N+.

Photo 2. Quarz-Albit-Biotit-Granat-Schiefer

Biotit B, der zusammen mit dem Almandingranat neu entsteht, bildet konzentrische Anordnung um Almandinporphyroblaste (Bildmitte). 35X, N+ α

Photo 1. Quarz-Biotit-Cordierit-Kalifeldspat-Granat-Subfazies

Die aus Biotit und Muskovit entstandenen Cordieritnester sind weitgehend. pinitisiert. 100X, N+.

Photo 2. Quarz-Kalifeldspat-Cordierit-Sillimanit-Biotit-Subfazies Die nadeligen Sillimanitkristalle sind wirr im Quarz verwachsen 500X, NII.

Photo 1. Quarz-Cordierit-Kalifeldspat-Andalusitfels

Muskovite (gefâltet) sind völlig zum Andalusit (dunkelgrau) umgewandelt. 35X. NIL

Photo 2. Perigneis

Die linsengörmigen Titanitreste (schwarz) sind in einer Matrix von Quarzpflaster entlang der alten sedimentåren Schichtung angeordnet. Foliation ist fast parallel zur Schichtung. 35X, NII.

TÜRKİYE MERMERLERİNİN FİZİKO-MEKANİK ÖZELLİKLERİ ve MERMERLERİN SINIFLANDIRILMALARI HAKKINDA DÜŞÜNCELER

(The Physico-Mechanical Properties of Turkish Marbles and Proposals for Their Classifications.)

K. Erguvanlı – E. Yüzer – K. Güleç – C. Zanbak İ.T.Ü. Maden Fakültesi, Tatbikî Jeoloji Kürsüsü

Öz. — Türkiye'de, tarihsel devirlerden bu yana yerleşip gelişen çeşitli uygarlıklar tarafından verilen san'at yapıtlarında, mermer ve diğer renkli taşların ayrı bir yeri olmuştur.

Dün ve bugün, ülkemizde kullanılan taşların yaklaşık olarak % 90'nını Afyon ve Marmara Adasından çıkartılan, ilmi anlama uygun mermerler meydana getirmektedir.

Bu gerçek gözönünde bulundurularak, İ.T.Ü. Maden Fakültesi Tatbiki Jeoloji Kürsüsünde, buralardan çıkartılan mermerlerin jeolojik ve fiziko-mekanik özeliklerini ayrıntılı olarak belirtmek amacı ile çalışmalar yapılmış ve halende bu tür araştırmalara devam edilmektedir.

Arazi ve laboratuvarda yürütülen bu çalışmalarla, adı geçen mermerlerin fiziko- mekanik ve teknolojik özellikleri saptanmıştır. Ayrıca mermerlerin sınıflandırılmasında yararlanılan renk ve kullanma yeri v.b. gibi kriterlerin yanısıra, kristal boyutu, ayrışma derecesi, anizotropi gibi fonksiyonel sınıflandırma kriterleri önerilmiştir. Halen Afyon ve Marmara Adası mermeleri için ileri sürülen bu sayısal kriterlerin diğer mermer ve renkli taşlara da uygulanması için gerekli çalışmalar sürdürülmektedir.

Abstract. – It is apparent from works of art that marbles and other coloured stones had a special place in the architecture of the different civilizations throughout Turkish history.

In Turkey, past and present, approximately 90 % of the stones that can be scientifically described as marbles, come from Afyon and the Island of Marmara.

In view of this fact, a detailed researah project has been initiated by the Applied Geology Department of the İ.T.Ü. Mining Faculty to investigate the geological and physico - mechanical properties of these marbles.

The physico-mechanical and technological properties of the above mentioned marbles have been evaluated both in the field and the labora-
tory. Also, apart from criteria such as colour, and where it is to be used, in the classification of marbles other functional and numerical items like crystal dimensions, degree of weathering and mechanical anisotropy have been proposed. At the moment further investigation related to the classification of other marbles and coloured stones with regard to the numerical criteria used for Afyon and Marmara marbles is being carried out.

GİRİŞ

Tarihsel devirlerden beri bir çok uygarlığın doğup geliştiği ve sayısız eser bıraktığı Türkiye'de mermerler, renkli ve desenli taşlar, buralarda kullanılan yapı malzemesi arasında ayrı bir değer ifade etmektedir. İlk insanlar, Hitit'lere ve Paflagonyalı'lara, Frikya, Karya ve Lidya'lılara ait yapılar ve desenler bu insanların, taştan ne kadar ve nasıl yararlandıklarını çok iyi gösterir.

Afyon bölgesinde, işletilmiş mermer ocaklarındaki artıklar içinde, madeni paraların bulunması, büyük çapta ilk mermer çıkartılmasının (M.Ö. 900 sıralarında) başladığını gösteren bilinen ilk tarihsel belgedir. Daha sonraları Roma ve Bizanslıların büyük mermer bloklarla yaptıkları binalar, sütun ve sütun başlıkları, heykellerdeki zevk ve san'at açısından bugünün insanlarını hayret içinde bırakmaktadır.

Anadolu Selçuklularına ve Osmanlı Türklerine ait camii, han, hamam, kervansaray ve medreselerin duvar, kapı ve pencerelerindeki oyma ve kabartmalar, geometrik şekiller ve figürler o devir insanlarının zevk, hayâl ve teknik yeteneğini çok güzel göstermektedir. Yükseliş devri Osmanlı eserlerinde görülen renkli mermerler ve süslemeler, mimari zevkin örnekleridir. Daha sonraki yıllarda taş'a verilen önem ve ondan yararlanma gitgide azalmış ve hatta cumhuriyetin ilk kuruluş yıllarında anıtlarda kullanılmak üzere Avrupa'dan renkli mermerler getirtilmiştir. Ancak 1945 den sonra, Türk mimarları yapılan eserlerde mozaik sıva yerine Türkiye mermerlerini ve renkli taşlarını kullanmaya başlamışlardır.

Türkiye mermerleri içinde kalite, renk, tür, rezerv ve diğer özellikler açısından en önemlileri Afyon, Marmara, Geyve (Afrodisias), Efes mermerleridir. Eski eserlerde çoğun bunlar kullanılmıştır. Türkiye'de bugün işletilen ve kullanılan mermerlerin yaklaşık olarak % 90'ı bu iki alandan çıkartılmaktadır. Bundan dolayı aşağıda bu mermerlerin

fiziko-mekanik özeliklerinden bahsedilecek ve genellikle mermerlerin sınıflandırılmasında kullanılabilecek kriterler önerilecektir.

MERMERLERİN JEOLOJİSİ

İlmi anlamda mermer kalsit veya dolomit kristallerinden oluşmuş metamorfik bir kültedir ve diğer metamorfik kültelerle birlikte bulunmaktadır. Türkiye'de en çok yararlanılan Afyon ve Marmara mermerlerinin jeolojik oluşları ve litolojik özellikleri aşağıda kısaca açıklanacaktır.

Afyon Mermerleri

Afyon ilinin 25 km. kuzeydoğusunda İscehisar bucağı civarında yer almaktadır. Bu alandaki mermerler, Paleozoik yaşlı olduğu kabul edilen, metamorfik şist serisinin üst seviyelerinde büyük iki mercek şeklinde bulunmaktadır. (Şekil 1) Buradaki metamorfik şistler; albitli mikaşist, mikaşist, fillit, kuvars fillit, kuvarsit gibi az metamorfizmaya uğramış Yeşil Şist Fasiyesinin üyeleridir. Metamorfik Şistlerle mermerler arasında, kalınlığı 50-60 m. olan şisti mermerler yer almaktadır. Mermerlerin kalınlığı 50 -260 m. arasında değişmektedir. Mermerler içersinde yer yer, kalınlıkları 1 -5 cm. den 4-5 m. ye kadar değişen kloritli, serizitli şist tabakaları veya mercekleri bulunmaktadır. Afyon mermerleri, kristal boyutları 300-500 µ arasında değişen kalsit kristallerinden oluşmuştur. İçerlerinde az miktarda ve ikincil mineral olarak kuvars, serizit, klorit, manyetit, hematit, grafit bulunmaktadır. Bu minerallere göre mermerler değişik renk ve görünüş kazanmışlardır.

Marmara Mermerleri

İstanbul'un 60 mil güneybatısında, Kapıdağın 6 mil kuzeyinde yer alan Marmara Adasının jeolojik yapısı oldukça basittir. Adanın kuzeyinde kıvrımlı şistler, dolomitik mermer ve mermerler, güneyinde kristalize kalker mercekli metamorfik şistler bulunmaktadır. Bunlar, kıvrımlanma sırasında granodiorit bileşimli bir mağma ile kesilmiştir. Bu tür külteler adanın orta kısmında doğu-batı doğrultusunda uzanmaktadır (Şekil 1). Böylelikle Marmara Adasında pluto-tektonik olaylar sonucu oluşan, muhtemelen Paleozoik yaşlı, metamorfik külteler görülmektedir.

Sekil: 1- Marmara Adası ve Afyon-İscehisar Bölgesi Mermer Alanlarının Jeolojik Kesitleri.

 Mermer, 2- Metamorfik Şistler, 3- Gnays
Mermer, 5- Kalkşist, 6- Kuvarsit Mercekli Klorit, Serizit, Kuvars Şist, 7- Bazalt,
Fay.

Gri-mavimsi beyaz, iri kristalli (0,3-3 mm.) mermerler (tipik Marmara mermeri) 35 km², lik geniş bir alanda yayılmakta ve kalınlıkları doğudan güney batıya doğru 150-2000 m. arasında değişmektedir. Adanın kuzeyinde, MgCO₃ oranı % 45'i aşan, süt beyaz renkli küçük kristalli (40- 150 μ) bir dolomitik mermer şeridi bulunmaktadır.

FİZİKSEL ve MEKANİK ÖZELLİKLER

Afyon ve Marmara mermerlerinin fiziksel ve mekanik özelliklerini, saptamak amacıyla çeşitli deneyler ve çalışmalar yapılmıştır. Bu çalışmalar sonucunda mermerlerin kimyasal bileşimi, birim hacim ağırlığı, su emmesi, porozitesi, basınç direnci, E modülü ve aşınma direnci tayin edilmiş; ayrışma ve heterojenite-anizotropi özelikleri araştırılmış ve mermerlerin fiziko-mekanik özelikleri (Tablo 1) de verilmiştir.

TEKNOLOJİK ÖZELLİKLER

Afyon ve Marmara Adası mermerlerinin işletilmesine ve blok alınmasına, işletme şeklinin ve nakliye imkânlarının etki yaptığı saptanmıştır. Yapılan ayrıntılı çatlak analizleri sonucunda, jeolojik süreksizliklerin blok almaya önemli ölçüde etkimediği ve büyük boyutlu blokların (2x3x4 m.) alınmasının mümkün olduğu görülmüştür. Halen alınan blok boyutunu kısıtlayan faktörleri aşağıdaki gibi özetlemek mümkündür:

- 1 İşletme metotlarının ilkelliği,
- 2 Ocaklarda mekânizasyon eksikliği,
- 3 Taşıma imkânsızlıkları,
- 4 Yol durumu,
- 5 Yükleme ve boşaltma imkânsızlıkları,

Bugün Türkiyedeki ocaklardan bir yılda çıkartılan 30.000 m³, kaplama taşının yaklaşık olarak % 90'ı Afyon ve Marmara Adasından sağlanmaktadır. Yaptığımız ayrıntılı çalışmalara göre Afyondaki çeşitli mermerlerin görünür rezervi: 70.10⁶ m³; muhtemel rezervi : 500.10⁶ m³ den ve Marmara Adasında ise muhtemel rezerv : 1000.10⁶ m³. den fazladır. Yukarıda belirtilen kısıtlayıcı faktörlerin ortadan kaldırılması ile blok boyutu ile birlikte üretimin de artacağını söylemek mümkündür.

EKONOMİK ÖZELLİKLERİ

Mermerin kullanılmasının yaygın hale gelmesinde geleneğe dayanan bir zevkin yanısıra, ekonomik faktörlerin de önemli katkısı vardır. Başka bir deyimle mermerlerin kullanılmaları birim fiyatları ile sınırlanmaktadır. Birim fiyatına da işletme şekli, nakliye imkânları, vergi ve kâr hadleri etki yapmaktadır.

ablo 1 — Mermerlerin Fiziko Mekanik ve Kimvasal Öze	ellikleri.
ablo 1 — Mermerlerin Fiziko Mekanik ve Kimvasal	Öze
ablo 1 — Mermerlerin Fiziko Mekanik ve	Kimyasal
ablo 1 — Mermerlerin Fiziko Mekanik	Ve
ablo 1 — Mermerlerin Fiziko	Mekanik
ablo 1 — Mermerlerin	Fiziko
ablo 1	Mermerlerin
ablo 1	1
ablo	
-	Tablo

	1				1	10.010.00		
	(%	SiO ₂	1		0.22	0.67	0.67	1.55
	eșim (Fe ₂ O ₃	1		0.27	0.25	0.05	0.29
	nyasal Bil	MgO	1,10	18,18	1		1	, . . .
ennkieri.	Kin	CaO -	54,58	30,51	53,31	52,29	50.80	46,11
yasal Oc	Aşınma	(mm)			8.4	Ľ2	7.3	11.4
IIIIN DA V	Statik Elastisite Modülü	E (kg/cm² . 10 ⁵)	11.6	10.7	I	2.5	1	Let ed med
	Dondan Sonra Rasinc	Direnci (kg/cm²)		1	680	650	660	650
	Basınç Direnci	ح (kg/cm²)	1110	2090	840	800	690	610
	Porozite n	(%)	0.70	1.10	0,10	0,18	0.16	0.16
	Ağırlıkça Su Emme	(%)	0.06	0.10	0.05	0.05	20.0	20.0
and the second se	Birim Hacim Ağırlık	Υ (gr⁄/cm³)	2.70	2,81	2.72	2.72	2,73	2.73
	Özellik	İsmi	Gri, Tabakalı Marmara Mer- meri	Süt Beyaz Marmara Mermeri (Dolomitik)	Afyon Beyaz Mermer (Afyon Kaymak)	Afyon Açık Sarı Afyon Şeker	Afyon Açık Gri (Gri Mermer)	Afyon Gri Mavi (Kaplan Postu)
L	/	÷.	ARA	MAAM		NOX	ЯA	

Afyon ve Marmara Adası mermer ocaklarında çok ilkel işletme usulleri uygulanmaktadır. (Şekil 2 a, b) Çoğun el aletlerinin kulla-

Şekil : 2 — Marmara Adası (a) ve Afyon-İscehisar (b) mermer ocaklarında ilkel işletme metotları ile mermer blok üretimi.

nıldığı bu ocaklarda, kompresör, buldozer, vinç gibi normal işletme usullerinin gereği olan makinalara rastlanması bile güçtür. Bundan dolayı ocakta % 60'a yakın taş kaybı olmakta ve büyük blok çıkarılmamaktadır. Bu nedenlerle Afyon ve Marmara Adasında götürü usulle çalıştırılan ocaklarda maliyet 450 - 500 TL/m³.'e yükselmektedir.

Diğer taraftan yol, araç, yükleme ve boşaltma olanaklarının da kısıtlı bulunuşu nedenleri de birim fiyatı arttırmaktadır. Örneğin Marmara Adasında, alet amortismanı ile birlikte ham mermer bloğunun birim fiyatı 500-550 TL/m³. dür. İstanbula 500 km. karayolu mesafesindeki Afyon - İscehisar mermerlerinin taşınması sırasında bu fark daha da artmakta, ocak maliyeti Marmara mermeri ile aynı olmasına rağmen Afyon mermerlerinin ham bloklarının İstanbul satış fiyatı 1500 TL/m³.'e yükselmektedir.

Buna kesmedeki kayıpların da fazla oluşu eklenince, işlenmiş, 1 cm. lik plaka Marmara mermerinin satış fiyatı 120 TL/m². Afyon mermerinin ise 175 TL/m². yi bulmaktadır (Tablo 2).

		is	STANBUL'DA SATIŞ	>
Mermer Cinsi	Ocak Maliyeti	TI /m ³	TL/	m ³
	TL/m ³	1 L/111 ⁻	2 cm	4 cm
AFYON MERMERİ	500- 550	1500	105	180
MARMARA MERMERİ	500- 550	900 - 1000	80	115

Tablo 2 - Afyon ve Marmara Adası Mermerlerinin Birim Fiyatları.

Türkiye'de, blok taş üretiminin ilkel ve kontrolsuz oluşu yüzünden yıllık üretim ve tüketimi belirten güvenilir istatistiksel veriler yoktur. Marmara ve Afyon mermer alanlarında yaptığımız soruşturmalara göre Marmaranın bugünkü üretimi 20.000 m³/yıl. Afyonunki 2000 m³/yıl kadardır. Diğer blok taşların üretim miktarı hakkında kesin veriler olmamakla beraber Türkiye'de toplam blok taş üretiminin 30.000 m³/yıl dolayında olduğu tahmin edilmektedir. Hal böyle iken «1969 Mineral Year Book» da 1968-69 Türkiye mermer (ticari anlamda) üretiminin 50.000 m³/yıl olduğu verilmektedir. Devlet İstatistik Enstitüsünde Türkiye mermer üretimine ait veriler olmadığı bildirildiğine göre, yukardaki miktarın hangi kaynaklara göre hesaplandığı kestirilememektedir. İstatistiksel bilgilerin yokluğunun önemli bir nedeni, blok taş üreten ocakların çoğunun halen 1901 yılında çıkarılan «Taş Ocakları Nizamnamesi» ne göre işletilmesidir. Bu ocakların, kısa süreler için kiralanması, sahiplerinin yatırımlarını kısıtlamakta ve onları, ileriyi düşünmeden, en ucuz şekilde, en çok taş üretme yollarına itmektedir. .Böylelikle kalın ocak pasaları altında kalan mermerlerin gelecekteki işietmeleri gün geçtikçe güçleşmektedir. Bu bakımdan son zamanlarda mermer ocaklarının Maden Kanunu kapsamına alınışını ve bazı ocakların bu yolda işlemlerini tamamlamalarını çok olumlu bulmaktayız. Aynı düşünce ile, Türkiyede blok taş ve endüstriyel taş-toprak ocaklarının tümünün bir an önce Maden Kanunu kapsamına alınmasını da zorunlu görmekteyiz.

MERMERLERİN SINIFLANDIRILMASI

Mermerleri çeşitli özeliklerine göre sınıflandırmak mümkündür. Genel olarak böyle bir sınıflandırmada bir çok özellik kriter olarak alınabilir. Halen mermerler renklerine ve kullanma yerlerine göre sınıflandırılmaktadır. Amerika Standartlar Enstitüsü, 1961 yılında, mermerleri ve diğer taşları işlenişlerine, ticari değerine etki yapan ve işleniş sırasında ortaya çıkan kusurlarına göre A, B, C, D gruplarına ayırmıştır (Tablo 3).

Tablo 3 - Amerika Standartlar Enstitüsü Mermer Sınıflandırması
(1961)

SINIF	ÖZELLİK
A	Sağlam, üniform ve işlenebilme niteliği çok iyi.
В	Genellikle A gibi, fakat işlenebilme niteliği iyi değil, bazan yapıştırılması ve doldurulması gerekli kusurlar görülür.
С	İşlenme niteliği değişken ve damar, fissür, çatlak, boşluk ve benzeri gibi jeolojik kusurlar çokça görülür. Bu kusur- lar çeşitli maddelerle tamir edilerek kullanılabilir.
D	C grubuna benzer, kusurları daha çoktur ve işlenebilme niteliği kusurlara bağlı olarak çok fazla değişmektedir. Süs taşı olarak kullanılan renkli ve damarlı mermerler bu gruba girer.

Yukarıda görüldüğü gibi bu sınıflandırmada; mermerleri birbirinden ayırmayı ve sınıflandırmayı sağlayacak sayısal kriterler bulunmamaktadır. Bundan dolayı biz mermerleri, renk ve kullanma yerinin yanısıra,

a) Kristal boyutlarına,

b) Ayrışma derecelerine,

c) Mekanik anizotropilerine göre,

sayısal kriterlere dayanarak, sınıflandırma çabasında bulunduk. Aşağıda, yaptığımız bu sınıflandırmalar ve sınıflandırma için ileriye sürdüğümüz kriterler açıklanacaktır.

Renklerine Göre

Afyon ve Marmara mermerleri renklerine ve bunların miktarlarına (%) göre aşağıdaki şekilde sınıflandırılabilir (Tablo 4). Afyon mermerleri çoğun, çeşitli renkte, damarlı ve breşimsi dokuda, Marmara mermerleri ise, gri ve tabakalı yapıda bulunmaktadır. Bu renkler daima birbirinden diğerine geçmekte ve dolayısı ile daha fazla sayıda değişik renk ve desen ortaya çıkmaktadır.

Tablo 4 - Afyon ve Marmara Adası Mermerlerinin Renklerine Göre Sınıflandırılması

	RENK	İSİM	OCAKLARDAKİ YAKLAŞIK MİKTARLAR (%)
lası	Süt beyaz	Ak Mermer	3 - 5
a Ac	(Dolomik)		
mar	Beyaz	Beyaz Mermer	10 -15
Mar	Gri, tabakalı	Tipik Marmara	80 - 85
Γ	Beyaz	Ak Mermer (Afyon	15 - 20
		Kaymak)	
	Açık Sarı	Afyon Şeker	20 - 25
z	Açık Gri	Gri Mermer	50 - 60
ΔFY(Gri Mavi	Kaplan Postu	1 -2
	Vişne Çürüğü	Afyon Gülü	1 -2
	Kirli Sarı	Afyon Sarısı	3 - 5
	Beyaz - Vişne Kahverenkli Breş	Güvercin Bağrı Çıtıpıtı	2 - 3

Kullanma Yerlerine Göre

Mermerlerin renkleri, dokuları, yapıları, fiziko-mekanik özelikleri, kristal boyutları ve ayrışma dereceleri göz önünde tutularak kullanılmalıdır. Bu kriterleri esas alarak, Türkiye mermerlerinin aşağıdaki şekilde kullanılmaları önerilmiştir (Tablo 5).

	ÖRNEK MERMER CİNSİ
Kaplama ^{Dış} İç	Marmara gri tabakalı, Afyon açık gri, beyaz Bütün mermer türleri tercihan renkli ve breşimsi dokuda olanlar.
Döşeme	Marmara gri tabakalı, Afyon açık sarı, açık gri, beyaz.
Süs Eşyası	Afyon açık sarı (yarı saydam).
Heykel	Afyon ak mermer, Marmara beyaz.
Mozaik	Marmara süt beyaz (dolomitik), Afyon beyaz ve vişne çürüğü.
Cam ve Seramik Endüstrisi	Marmara süt beyaz (dolomitik).

Tablo 5 - Afyon ve Marmara Adası Mermerlerinin Kullanma Yerlerine Göre Sınıflandırılması

Kristal Boyutlarına Göre

Bu sınıflandırmada kristal boyutlarının % 75'i nin belirli sınırlar içerisinde kalması kriter olarak alınmıştır. Önerdiğimiz alt ve üst sınırlara göre mermerler 4 sınıfta toplanmıştır (Tablo 6). Yapılan bu sınıflandırmaya göre; ince, orta ve kaba kristalli Türkiye mermerlerine birer örnek (Şekil 3) de görülmektedir.

Şekil : 3 — İnce kristalli Marmara Dolomitik (a), orta kristalli Afyon (b) ve kabakristalli Marmara (c) mermerlerinin mikroskopta görünüsleri.

Ayrışma Derecesine Göre

Mermerlerin sınıflandırılmasında önerdiğimiz diğer bir sayısal kriter de «Ayrışma Derecesi» dir. Ayrışma derecesinin saptanması için laboratuvarda bir seri hızlı ayrışma deneyleri yapılmıştır. Hızlı ayrışma deneyinde pH = 5 olan yağmur suyu bileşimine benzer bir eriyik (ağırlıkça % 10 Na₂SO₄, % 3.7 MgCl₂, CO₂) hazırlanmış, bu eriyik laboratuvarda ayrışmayı hızlandırmak için konsantrasyonu yağmur suyuna göre 10⁴ defa arttırılarak kullanılmıştır. Eriyik içinde belirli süre tutulan numuneler çıkarılmış sonra 105°C de kurutulmuştur. Bu işleme, kristaller arası bağın azalarak deney numunesinin elle ufalanmasının başlamasına kadar devam edilmiştir. Bu tür elle ufalanan mermerler çok ayrışmış olarak kabul edilmiştir. Böylelikle taşların ayrışmasını doğuran fiziksel ve kimyasal faktörlerin laboratuvarda benzetimi yapılmıştır.

Bu deneyler sırasında mermerler ağırlıkça su emmelerinde meydana gelen artışlar ölçülerek «Ayrışma Derecesi» aşağıdaki şekilde tanımlanmıştır :

 $D_w = (W_n - W_0) / W_0$ Burada ·

D.:: Ayrışma derecesi.

W₀: Ayrışmamış mermerin ağırlıkça su emmesi (%)

W_n: n. ayrışma devresi sonundaki ağırlıkça su emme (%)'ni göstermektedir.

	KRİSTAL	ÖRNEK	
SINL	BOYUTU µ	Türkiye	Yabancı
Çok ince Kristalli	< 50		Yule (A.B.D.)
İnce Kristalli	50 100	Marmara Dolomitik	Carrara (İtalya)
Orta Kristalli	100 - 1000	Afyon	Carrara (İtalya)
Kaba Kristalli	> 1000	Marmara	Georgia (A.B.D.)

Deneyler sırasında ayrışma derecesinin (D,,) artması ile numunede görülen fiziksel özellik değişimlerine (renk atma, fissürleşme, çatlama, elle ufalanma) göre mermerlerin aşağıdaki şekilde sınıflandırılması önerilmiştir (Tablo 7).

SINIF	ÖZELLİK DEĞİŞİMİ	AFYON MERMERLERİ İçin Ayrışma derecesi
Ayrışmamış	Doğal	o
Az Ayrışmış	Renk alma	0 4
Crta Ayrışmış	Fissiuloșmo	4 - 8
Ayrışmış	Çatləma	8 - 12
Çok Ayrışmış	Ufalanma	> 12

Table 7 — Mermerlerin Avrisma Derecesine

Mekanik Anizotropilerine Göre

Külteler üzerinde arazide ve laboratuvarda deneyler yapılırken bunların homojen ve izotrop bir ortam olmaktan uzak oldukları görülmüş ve bulunan değerlerin bu uzaklaşmalarla orantılı olarak büyük ölçüde değiştiği saptanmıştır. Arazi deneylerindeki farklar tabakalanma, catlak, fay v.b. gibi makrojeolojik süreksizliklere, laboratuvar deneylerindeki farklar ise kristal boyutu, kenetlenme derecesi ve kristal vönelimi gibi mikrojeolojik nedenlere davanmaktadır. Özellikle metamorfik kültelerde, bu arada mermerlerde, kristal yönelimi dolayısı ile belirli doğrultularda, fiziksel ve mekanik özellikler önemli sekilde değişmektedir. Başka bir devişle mermerler fiziksel ve mekanik davranış açısından «izotrop» bir ortam özelliği taşımamaktadır. Bu düşünceden hareket ederek mermerlerin sınıflandırılmasında «anizotropi» nin de bir kriter olarak kullanılması düşünülmüş ve bu amaçla Marmara mermerleri üzerinde bir seri deney yapılmıştır. Yönlü numuneler üzerinde basınç direnci, dinamik ve statik elastisite modülü tayini, sertlik, nokta kırılma direnci, değişik doğrultularda ultrasonik hız tayini, nokta yükleme ile çatlak oluşturulması deneyleri ile «anizotropi» nin sayısal olarak ifade edilmesine çalışılmıştır. Bu deneylerden nokta yük altında catlak oluşumu deneyi sonuçları değerlendirildiğinde, bunun, mermerler için bir sınıflandırma kriteri olarak göz önüne alınabilecek nitelikte olduğu görülmüştür. Bu deney 7x7x1 cm. boyutlu dilim numunesinin merkezine uygulanan nokta yükleme sonucu oluşan çatlak doğrultularının ölçülmesi esasına dayanır. Deneyler sonucunda çeşitli öoğrultularda ölçülen çatlaklarla (A) «anizotropi kat sayısı» tanımlanmıştır.

 $A = (K_{max} - K_{min}) / K_{ort}$

Burada :

A : Anizotropi katsayısı

 K_{max} : Çatlakların en fazla geliştiği doğrultudaki çatlak sayısı

 ${\rm K}_{\rm min}\,$: Çatlakların en az geliştiği doğrultudaki çatlak sayısı

K_{ort}: Çeşitli doğrultularda gelişen ortalama çatlak sayısı.

Bu katsayının çeşitli değerlerine göre aşağıdaki sınıflandırma önerilmiştir (Tablo 8).

SINIF	ÖZELLİK	ANİZOTROPİ KATSAYISI (A)
I.,	İdeal İzotrop	0 - 1
п.	İzotrop	1 - 2
111	Oldukça İzotrop	2 - 3
IV	Anizotrop	> 3

Tablo 8 — Mermerlerin Mekanik Anizotropilerine Göre Sınıflandırılması.

Bu sınıflandırmaya göre dolomitik Marmara mermeri III. (oldukça izotrop) gri-mavi damarlı Marmara mermeri ise IV. (anizotrop) sınıfa girmektedir.

İzotrop mermerler üzerinde herhangi bir mekanik özellik için yapılan 3 deney ortalaması güvenilir bir sonuç verirken, anizotrop mermerlerde aynı güveni duymak için daha çok deney yapılması gerekecektir.

Anizotropi kriteri aynı zamanda mermer ocaklarından blok alabilme ölçüsü olarak da kullanılabilir. İzotrop sınıflara giren mermerlerde her yönde kolaylıkla çatlak gelişmesi blok boyutunu kısıtlamakta ve alınmasını güçleştirmektedir. Bundan dolayı bu sınıflara giren mermerlerde kama metodu yerine tel testere metodu kullanılmalıdır. Anizotrop mermerlerde ise belirli doğrultularda çatlakların kolayca gelişmesi işletmeyi kolaylaştırmakta ve blok boyutlarına olumlu etki yapmaktadır.

SONUÇLAR

Türkiyede tarihsel devirlerde ve günümüzde çeşitli alanlarda kullanılan (ilmi anlamdaki) mermerlerin büyük bir kısmı (yaklaşık olarak % 90) Marmara Adasından ve Afyon-İscehisar bölgesinden çıkarılmaktadır. Bu bakımdan iki bölgeden çıkarılan mermerlerin ayrıntılı incelenmesi ile «Türkiye Mermerleri» hakkında gerçeğe yakın bir fikir edinilebilir. Bu gerekçe ile İ.T.Ü. Maden Fakültesi Tatbiki Jeoloji Kürsüsü elemanları Türkiye mermerleri üzerinde çok eskiden araştırmalara başlamış ve halen bunları sürdürmektedirler.

Araştırmalar, mermerlerin jeolojik yapılarım aydınlatmak amacıyla arazi çalışmaları ile başlamış, fiziksel, mekanik ve kimyasal özeliklerinin öğrenilmesi için de laboratuvar deneyleri yapılmıştır. Bu araştırmadan bugün için çıkarabileceğimiz sonuçlar aşağıdaki şekilde özetlenebilir:

- Marmara ve Afyon-İscehisar mermerleri Paleozoik yaşlı olarak kabul edilen metamorfik şistler içinde bulunmaktadır. Marmara Adasında 1 milyar m³'ün, Afyon-İscehisar bölgesinde ise 600x 10⁶m³'ün üzerinde mermer rezervi bulunmaktadır.
- 2 Marmara mermerleri gri tabakalı ve süt beyaz olmak üzere iki türde, Afyon mermerleri ise içindeki renk ve damarların dağılış özeliklerine göre 7 türde toplanmıştır. Marmara Adasındaki süt-beyaz (dolomitik) mermerlerin dışında, diğer mermerlerdeki CaCO₃ oranı % 95 den fazladır. Genel olarak su emme poroziteleri çok düşüktür. (% 05 - % 1). Marmara mermerlerinin basınç dirençleri, Afyon mermerlerine oranla daha yüksektir. (Marmara 1100- 2100 kg/cm², Afyon 600-850 kg/cm²).
- 3 Her iki mermer alanında blok boyutlarını kısıtlayan faktörler, jeolojik süreksizlikler olmayıp, işletme metodlarının ilkelliği, ocaklarda mekanizasyon eksikliği, taşıma, yükleme ve boşaltma imkânsızlıkları ve yol durumu ile ilgilidir.
- 4 Mermer alanlarında gayet ilkel metodlarla yapılan mermer üretimi yaklaşık olarak Marmara Adasından 20.000 m³/yıl. Afyon - İscehisardan 2000 m³/yıl kadardır.
- 5 Mermerleri kendi aralarında nitelik ve nicelik bakımdan ayıran sınıflandırmalar pek azdır, bunlar kullanma yerleri renk, işleniş ve çeşitli kusurlara göre yapılan ve sayısal kritere bağlı olmayan sınıflandırmalardır.
- 6 Bu araştırmada mermerlerin kristal boyutu, ayrışma derecesi ve mekanik anizotropilerine göre sınıflandırılmaları için sayısal kriterler önerilmiştir. Marmara mermeri kaba kristalli (Ø > 1000 µ), mekanik olarak anizotrop sınıfa Marmara dolomitik

mermeri ince kristalli (Ø = 50- 1000 μ) ve «oldukça izotrop» sınıfa girmektedir. Afyon mermerleri ise orta kristalli (100 - 1000 μ) sınıfa girmektedir.

BİBLİYOGRAFYA

Afyon Valiliği, 1967, Afyon İl Yıllığı. Doğan Kardeş Matbaası. İstanbul.

Arıkan, M. 1968, Mermer ve Mermercilik. Ankara Basımevi, Ankara.

- ASTM 1961, Standard Methods of Tests for Exterior and Interior Building Marble. ASTM Committe C-18. Philadelphia.
- Bain, G.W. 1941, Measuring Grain Boundries in Crystalline Rocks. The Jour. of Geology Vol. XLIX, No: 2, pp. 199-206 Nevalank.
- Bowles, O. 1968, Marble. Bureau of Mines Inf. Circ. 7829. Denver. U.S.A.
- Cheung, Y.K. STAGG, K.G. ZIENKIEWICZ, O.C, 1966, Stresses in Anisotropic Media with Particular Reference to Problems of Rock Mechanics. Jour. of Strain Analysis. Vol. 1, No: 2, pp. 172-182.
- Chilingar, G.W. BISSELL, H.J. FAIRBRIDGE, R.W. 1967, Carbonate Rocks. Physical and Chemical Properties, Part A and Part B. Elsevier Comp. Amsterdam.
- Donath, F.A. 1964, Strength Variation and Deformational Behavior in Anisotropic Rock- State of Stress in the Earth's Crust. Elsevier Pub. Co. pp. 281-300, Amsterdam.
- Grigg, D.T. 1951, Deformation of Yule Marble. Part: I. Effects at 150°C. Bull, Geol. Soc. Am. Vol: 62. pp.
- Mc. Williams, J.R. 1966, The Role of Microstructure in the Physical Properties of Rocks. Twin Cities Mining Res. Center. Paper No: 102, Minneapolis, Minnesota.
- M.T.A. 1961, Exterior Marble. Marble Institute of America, New York.
- M.T.A. 1964, American Standarts Specifications for Interior Marble. Marble Institute of America New York.
- Ramez, M.R.H. MURREL, S.A.F, 1964, A Petrofabric Analysis of Carrara Marble. Int. Jour. Rock. Mech. Mining Sci, Vol: 1, Pergamon Press.
- Sayar, M. Erguvanlı, K, 1962, Türkiye Mermerleri ve İnşaat Taşları. İ.T.Ü, Yayını. Kağıt ve Basım İşleri A.Ş. İstanbul.
- Yalman, B. 1969, Afyon Mermerlerinin Arkeolojik Araştırılması (Afyon Müzesinde Yayınlanmamış Rapor).
- Yüzer, E. 1971, Marmara Adası Mermerlerinin Mühendislik Jeolojisi ve Anizotropik Özelliklerinin Araştırılması. Doçentlik Tezi. (İ.T.Ü. Maden Fakültesi Ofset Atölyesi).
- M.T.A. 1966, Türkiye Mermer Envanteri. M.T.A. Enstitüsü Yayını, No: 134 Ankara.
- T.S.E. 1969, Doğal Yapı Taşlan Muayene ve Deney Esasları Türk Standartları. (TS 699), UDK 691.2. Türk Standartları Enstitüsü, Ankara.
- T.T.S.O.B. 1961, Türkiye Mermerleri, T. Ticaret ve Sanayii O. Birl. Yayını Ankara.

MERMERLERİN AYRIŞMA DERECESİ İLE FİZİKO -MEKANİK ÖZELİKLERİ ARASINDAKİ İLİŞKİLER

(The Relationship Between the Degree of Weathering and the Physico-Mechanical Properties of Marbles)

Kemâl Güleç

İ.T.Ü. Maden Fak. Tatbiki Jeoloji Kürsüsü

Öz — Bu yazıda Ayrışma derecesinin Fiziksel ve Mekanik Özeliklere olan etkisi araştırılmıştır. Yapılan araştırmada, ocaklardan alınan sağlam mermerler laboratuvarda ayrıştırılmıştır. Deneyler sırasında, ayrışmış ve ayrışmamış mermerin ağırlıkça su emme miktarı % cinsinden saptanmış (W_n, W_n) ve bunlarla ayrışma derecesi (D_w) aşağıdaki şekilde tanımlanmıştır.

$$D_w = W_n - W_o / W_o$$

Deneyler sonunda ayrışma derecesinin artması ile su emme; porozite ve birim hacmin yükseldiği; basınç direnci ve birim hacim ağırlığının azaldığı görülmüştür.

Abstract – The effect of weathering on the physical and mechanical properties of marbles has been studied. Prior to the experiments fresh marble specimens were subjected to laboratory weathering. Water absorbtion capacity of the weathered and fresh specimens was determined as weight percent (W_n, W_o) and a relationship has been established with the degree of weathering (Dw) as;

$$D_w = W_n - W_o / W_o$$

It is observed that with the increase of (D_w) water absorbtion capacity, porosity and unit volume increases but unit weight and compressional strength decreases.

GIRİŞ

Son yıllarda, taşların ayrışmasını ve ayrışabilmesini rakamlarla ifade edebilmek amaciyle pekçok çalışmalar yapılmaya başlamıştır. Mühendislik jeolojisinin önemli konularından biri olan ayrışma, Temel İnşaatı ve Zemin Mekaniği açısından ayrı bir değer ifade etmektedir. Diğer taraftan mimaride kullanılan taşların ayrışma özelliklerine göre ayırtedilmesi, iç ve dış kaplamada kullanma alanlarının belirtilmesi ve taş sınıflamalarında ayrışmanın bir kriter olarak alınması gerekli hale gelmiş bulunmaktadır.

Ayrışma anlamında kullanılan birçok kelime ve deyim bulunmaktadır. Bu araştırmada benimsenen «Ayrışma» kavramından; taşların fiziksel ve mekanik özeliklerinde meydana gelen değişmeler belirtilmek istenmektedir. Buna göre deformasyon meydana getirmiş bulunan her taş ayrışmış kabul edilmiştir.

AYRIŞMA DENEYLERİ

Taşların ayrışmasına sebep olan birçok faktör vardır. Ayrışmayı doğuran bu faktörler sıra ile:

1 – Atmosferik etkiler $(SO_{3'}, SO_{2'}, CO_{2'}, is, duman, yağmur suyu),$

2 - Fiziksel etkiler (Isınma ve soğuma, donma, aşınma, v.b.),

3 – Suların etkisi (Akarsu, deniz suyu, göl suyu, yeraltı suyu),

4 - Bitkiler ve canlıların etkisi,

şekillerinde olmakta, fiziksel ve kimyasal olayları meydana getirmektedir. Yukarda adı geçen faktörlerin taşların ayrışmasındaki önem derecelerini öğrenmek üzere oldukça uzun süreden bu yana laboratuvar çalışması yapılmış ve halende yapılmaktadır. Bu konuda yapılan çalışmalar bir kısmı daha önce inşa edilmiş olan yapılarda kullanılmış olan taşların ayrışmalarının açıklanmasını, ayrışmanın önlenmesini ve restorasyonunu amaçlamıştır. (Schaffer, 1955; Özuygur, 1963; Ollier, 1965; Winkler, 1966; Güleç, 1970; Richardson, 1971).

Son yıllarda yapılan araştırmalarda ise, ayrışmanın fiziko-mekanik özeliklerle olan ilişkisi üzerinde durulmakta, sayısal değerler bulunmağa çalışılmaktadır, (Kessler, 1949; Hamrol, 1961; Iliev, 1966; Kossev, 1970). Böylece, projelere esas alınmak üzere, ayrışma hakkında bilgi sahibi olunmaktadır. Ayrışmanın fiziko-mekanik özeliklerle bağıntısını saptamak amacı ile yapılan bu çalışmalarda araziden alınan deney numuneleri kullanılmaktadır. Başka bir deyimle yerinde ayrışmış bulunan numuneler laboratuvarlara getirilmekte ve bunlar üzerinde çeşitli deneyler yapılmaktadır. Bu şekilde ayrışmış taşları araziden elde etmek

güç olduğundan ve bunların ayrışma dereceleride bilinmediğinden dolayı bu çalışmada mermer ocaklarından alınan sağlam (ayrışmamış) numuneler Mühendislik Jeolojisi Laboratuvarında ayrıştırılmış ve bunlar üzerinde deneyler yapılmıştır.

HIZLANDIRILMIŞ AYRIŞMA DENEYLERİ

Yukarda açıklandığı şekilde, ayrışmış deney numunesi elde etmek için laboratuvarda «Hızlandırılmış Ayrışma Deneyleri» yapılmıştır. Bu amaçla içersinde (100 gr/lt Na₂SO₄, 37 gr/lt MgCl₂, CO₂, PH = 5 olan) bulunan bir eriyik hazırlanmıştır. Eriyik konsantrasyonu yağmur suyu bileşimine göre 104 defa artırılmış ve ayrışma hızlandırılmıştır. Bu eriyik içersinde belli süre tutulan numuneler belli süre 105°C de kurutulmuş, 24 saat içersinde, 2 kuruma 2 eriyiğe girme yapılmıştır. Böylelikle 24 saatlik bir peryod «1 Ayrışma Devresi» olarak tanımlanmıştır. Bu işleme kristaller arası bağın azalarak elle ufalanmanın başlamasına kadar devam edilmiş, bu şekilde elle ufalanan numuneler ayrışmış kabul edilmiştir. Böylece taşların ayrışmasını doğuran fiziksel ve kimyasal faktörlerin laboratuvarda benzetimi yapılmıştır.

Deneyler sonunda, deneye alınan 5 tür Afyon mermerindeki ayrışmalar farklı zamanlarda meydana gelmiştir. Breşimsi mermerler 18-20 ayrışma devresinde ayrışırken, ak mermerler 25-30 ayrışma devresinde ayrışabilmiş, ayrışma hızı litolojik özeliklerle ilgili bulunmuştur. Dolayısıyle breşimsi mermerler diğerlerine göre % 25 -30 defa daha kısa sürede ayrışmıştır (Şekil 1).

Deneyler sırasında mermerlerin ağırlıkça su emmelerinde meydana gelen artışlar ölçülerek «Ayrışma Derecesi» aşağıdaki şekilde tanımlanmıştır.

 $D_w = W_n - W_o / W_o$

Burada:

D_w = Ayrışma derecesi,

W_o = Ayrışmamış mermerin ağırlıkça su emmesini (%),

W_n = n'ci ayrışma derecesi sonundaki ağırlıkça su emmeyi (%) göstermektedir. Şekil 2'de ayrışma derecesinin su emme ile ilişkisi görülmektedir. Bu şekilde ayrışma derecesini tariflerken aşağıdaki nedenlerden ağırlıkça su emme esas alınmıştır.

1 – Su emmeyi tayin oldukça kolaydır,

2 – Hassas sonuçlar elde etmek mümkündür,

3 – Özel teknikler istemez.

Ayrışma derecesinin sınıflandırılmasından sonra, çeşitli ayrışma derecesinde bulunan numuneler üzerinde deneyler yapılmış, ayrışma ile fiziko-mekanik özelikler arasındaki bağlantılar saptanmıştır. Ayrışma derecesinin artması ile su emme, porozite, numune hacmi ve aşınma miktarının büyüdüğü, birim hacim ağırlığı ve basınç direncinin azaldığı görülmüştür (Şekil 3, 4, 5 ve 6). Bu sırada gerilme deformasyon eğrisinin eğiminin azaldığı ve kristaller arasındaki sınırların kaybolduğu görülmüştür (Şekil 7).

Şekil 1 - 5 tür Afyon mermerinde ayrışma devresi - Su emme ilişkisi, (A=Ak, B=Açık sarı, C=Gri, D= Kaplan Postu, E=Güvercin Bağrı mermer)

Şekil 2 — Mermerlerde ayrışma derecesinin su emme ile ilişkisi.

Şekil 3 - Ayrışma derecesi - porozite ilişkisi.

Şekil 4 — Ayrışma derecesi - hacım artışı ilişkisi.

Şekil 5 — Ayrışma derecesi - birim hacım ağırlığı ilişkisi.

Şekil 7 - b

Şekli 7 — Ayrışmamış (T - a) ve ayrışmış (7 - b) mermerlerin ince kesitlerinin mikroskop altında görünüşü. X25, + Nikol.

Summary – The weathering and weatherability of rocks has recently become one of the important subjects in engineering geology. The experiments on weathering are baing made on weathered samples taken from the field. In our research, tha intact marble samples were subjected to laboratory weathering before the experiments.

In our experiments, weathering effect was obtained by «accelerated tests». $SO=_4$, CI⁻, Mg⁺⁺, Na⁺ are present in natural rain water in a 10–15 mgr/lt composition, whereas in our accelerated tests these amounts were increased 104 times, to 137 gr/lt (with a pH = 5). The intact marble samples were left in this solution and In the oven (at 105°C) for determined time elapsed. This phenomenon of leaving in the solution and drying in the oven is defined as «weathering cycle» and was repeated for 20–25 times/samples.

It was observed that, related with the time left in solution and in the drying oven, the amount of water absorption by weight Increased further with the weathering cycles. According to this property of water absorption the degree of weathering has been defined as

 $D_w = W_n - W_o / W_o$ Where : $D_w =$ Weathering Degree, W_{a} – Water absorption by weight of unweathering marble (%),

 W_n – Water absorption by weight of weathered marble from the degree n. (%)

After maintaining D, the physico-mechanical properties of the samples were investigated at different degrees of weathering and represented graphically. It is observed that with increasing Dw (degree of weathering), unit weight, compresaive strength and modulus of elasticity decreased, but unit volume, porosity and water absorption increased., Also, with increasing Dw, boundaries between crystals, twin and cleavage planes showed deformations and a tendency to vanish.

As a result of our research, it was proved that weathering and weatherability is an important criterion that can be utilized In the marble industry and the engineering classification of rocks.

BİBLİOGRAFYA

- Güleç, K., 1970 Taşların ayrışması ve ayrışmanın ölçülmesi: Madencilik dergisi, C: 9, sayı: 10, Mad. Müh. Oda.,Yay. Ankara.
- Hamrol, A., 1961 Quantitative classification of the weathering and weatherability of rocks: 5, Int. Conf. on soil Mech. and Found. Eng. Paris.
- Iliev, I.G., 1966 An attempt to estimate the degree of weathering of intrusive rocks from their physico - mechanical properties: I. Int. Cong. of Rock Mech. Proceed. Lisboa.
- Kessler, D.W., 1949 A new durability test for marble; ASTM Bull.
- Kossev, N.W., 1970 Corrélations entre les caractéristiques physiques et mécaniques de certains roches, ayant égard au degréde l'altération des roches: Pro. of the sec. Cong. of Int. Rock Mech. Beograd.
- Özuygur, M., 1963 Ayrışma ve toprak teşekkülü: Umumi Jeoloji II. İTÜ yayını, İstanbul.
- Ollier, C., 1965 Weathering: Ollier and boy, Edinburg.
- Richordson, B.A., 1971 Chosing stone for the minster: Stone Industries. March-April, London.
- Schaffer, R.J., 1955 The weathering, preservation and restoration of stone building. London.
- Winkler, E.M., 1966 Important agent of weathering for building and monumental stone. Engineering Geol. Vol: 1 (5).

ANKARA YAHŞIHAN BÖLGESİNDE ÜST KRETASE — ALT TERSİ-YER İSTİFİNİN STRATİGRAFİSİ

(Stratigraphy of Upper Cretaceous — Lower Tertiary strata of Yahşıhan area, east of Ankara)

Teoman Norman

Orta Doğu Teknik Üniversitesi Jeoloji Mühendisliği Bölümü

Öz. — Üst Kretase-Alt Tersiyer boyunca sahanın batı kısımlarında türbid akıntılar, olistostromlar ve sualtı heyelanlarının faal olduğu devamlı bir sedimentasyon (3200 m) yer alırken, doğu kısımlarında çoğunluğu bazik denizaltı lav ve tüflerinden. ibaret bir formasyona Paleosen'de bir plütonun yerleştiği, sahanın yükselerek aşındığı, aşınma yüzeyi üzerinde Paleosen sonlarına doğru bir transgresyonun başladığı: görülmektedir. Neritik ve litoral malzemenin (700 m) oluşumundan sonra Eosen sonlarına doğru bütün sahada bir regresyon görülmekte, kırmızı rudit, arenit, lütit, beyaz lagüner kalker ve jipsler teşekkül etmektedir.

Neojen yaşlı yatay konumlu klastikler, kıvrılmış, yükselmiş ve aşınmış olart Üst Kretase - Alt Tersiyer yaşlı sedimentler üzerinde açısal bir diskordansla durmaktadır.

Abstract. – During the Upper Cretaceous-Lower Tertiary time a continuous (3200 m) sedimentation, mainly consisting of submarine slumps, olistostromes and turbidity currents, was taking place in the western half of the area. Meanwhile, in the eastern half, a granit complex plutonic intrusion was emplaced (Early Paleocene) in a formation, dominantly consisting of basic submarine lavas and tuffites. Uplift, erosion and subsidence of the eroded surface was followed by a marine transgression near the closing of Paleocene times. Following the deposition of neritic and partly littoral sediments (700 m), towards the end of Eocene (post Lutetian) a regression developed over the whole area, causing the deposition of mainly red colored rudite, arenite and lutite, as well as lagoonal white limestone and gypsum.

Horizontal Neogene clastics rest with an angular unconformity on the folded, uplifted and eroded sediments of Late Cretaceous-Early Tertiary age.

GİRİŞ

Ankara'nın doğusunda, Elmadağı'nın ofiolitli melanjı ile daha doğudaki Kırşehir masifinin intrusif kayaçları arasında, genellikle KKD-GGB doğrultusunda uzanan ve Eosen yaşlı görünen bir sediment şeridi, iki kütle arasına sıkışmış gibi durmakta ve bu iki kütlenin birbiri ile olan ilişkilerini de örtmektedir (Şekil 1). Bu çalışma, bahis konusu sedimentlerin oluşum şekillerini incelemek ve bu iki kütle arasındaki ilişkiyi ortaya çıkarmak amacıyla yapılmıştır (Norman, 1972).

İncelenen saha aşağı yukarı 430 km² olup, KKD-GGB doğrultusunda 30 km boyunda 15 km eninde bir şerit halinde uzanır. Batıda Irmak köyü, doğuda Kırıkkale kazası, kuzeyde Keçili köyü ve güneyde Hodar köyü yaklaşık olarak sahanın sınırlarını tayin eder. Sahanın en önemli yerleşme merkezini Yahşıhan bucağı teşkil eder (Levha I).

Teşekkür. — Bu çalışma Maden Tetkik ve Arama Enstitüsü'nün desteği ile, M.T.A. Bilimsel ve Teknik Araştırma Kurulu'nun bir projesi olarak yürütülmüştür. Sayın Genel Direktör Doç. Dr. Sadrettin Alpan'a, Ord. Prof. Hamit N. Pamir'e Dr. Zati Ternek'e ve Enstitütünün diğer idari elemanlarına yaptıkları yardım ve gösterdikleri anlayıştan ötürü teşekkürlerimi sunarım.

Çalışmanın muhtelif safhalarında görüşlerinden ve münakaşalarından istifade ettiğim Profesör Dr. Melih Tokay, Profesör Dr. Oğuz Erol, Dr. Gültekin Elgin, Dr. Fethullah Özelçi, Dr. Sungu Gökçen, Paleontologlar Ayhan Güngör (Nazlı), Necdet Karacabey, Ercüment Sirel, Biler Sözeri'ye şükranlarımı sunarım.

LITOSTRATIGRAFI BIRIMLERI Genel

Bölgenin tüm stratigrafisini bir tek kesit boyunca veya belirli bir alanda incelemek mümkün değildir. Gerek buradaki litostratigrafi birimlerinin yere ve zamana bağlı olarak değişik şekilde oluşmaları, gerekse vukubulmuş tektonik hareketler ve erozyon safhaları, bölge stratigrafisinin, değişik alanlardan elde edilen bilgilerden derlenmesini gerektirmektedir.

Şekil 1 – Lokasyon haritası

Bölgede litostratigrafi birimlerinin istiflenmesini (succession) iki sütunda toplama mümkündür (Şekil 2). Kısaca «Batı istiflenmesi» olarak adlandıracağımız istiflenme, kuzeydoğudan güneybatıya uzanan ve çalışma sahasının kabaca batı yarısını kap-

adulecale

sayan bir alanda bulunur. Bu istiflenmede en altta ofiolitli Irmak formasyonu görülür. Üzerine, sırasıyla, yeşil tüflü arenitli Ilıcapınar formasyonu, sarı arenitli Bölükdağı formasyonu (Mestrihtiyen), kalker elemanlı rudit ve kalkarenitli Dizilitaşlar formasyonu (Paleosen), koyu gri yeşil renkli tüflü arenit ve lütit münavebeli Hacıbalı formasyonu (İpresiyen), iyi yuvarlanmış çakıllı ruditlerden ve fosilli kalker ve arenit arakatgılardan ibaret Keçili formasyonu (Lütesyen), kırmızı, sarı, yeşil rudit, arenit, lütit, kalker ve jipslerden müteşekkil Bahşili formasyonu (Priaboniyen - Alt Oligosen?) gelir. İstiflenmenin en üstünde ise, Neojen yaşlı yatay arenit ve rudit tabakaları bir diskordans ile oturur.

«Doğu istiflenmesi» ise kabaca calışma sahasının kuzeydoğudan güneybatıya uzanan doğu yarısını kapsar. İstiflenmede en altta yeşil tüf, diabaz, gibi kayaçlardan oluşmuş, üst kısımlara doğru arenit, lütit ve kalker (Mestrihtiyen) seviyeleri ihtiva eden Yahşıhan formasyonu görülür. Bu formasyon icine Mestrihtiyen'den sonra girmiş olan Karaca Ali plütonu bir granit-granodiorit-siyenit kompleksi olup, Yahşıhan formasyonunun bir kısım taşlarını metamorfize etmis, kuvarsit ve hornfels haline getirmistir. Bir yükselme ve erozyon safhasından sonra bu kayaçların aşınmış yüzeyleri üzerine transgrasif olarak aşağıdan yukarıya doğru sırasıyla şu formasyonlar gelmektedir : a) Altta kırmızı renkli rudit, arenit ve lütit, üstte yeşil renkli rudit ihtiva eden Karagüney formasyonu (İpresiyen-Lütesiyen), b) Sarı renkli arenit kumlu kalkerlerden ibaret Mahmutlar formasyonu (İpresiyen-Lütesiyen), c) Yeşil renkli lütitlerin hakim olduğu Bulanıkdere formasyonu (İpresiyen-Lütesiyen), d) Üste doğru granit çakılları ihtiva eden ruditlerden mütesekkil Kecili formasyonu, e) Kırmızı rudit, arenit, lütit, beyaz kalker ve jipsten oluşan Bahşili formasyonu. En üstte diskordansla, yatay durumda olan Neojen yaşlı formasyonlar bulunur. Batıya kıyasla, doğu istiflenmesinde Keçili formasyonu daha az, Bahşili formasyonu; ile Neojen yaşlı formasyonlar ise daha çok gelişmiştir.

Batı istiflenmesi : Irmak formasyonu

Çalışılan sahanın temelini teşkil eden geniş yayılımlı bu formasyon, (Levha II) özellikle Irmak istasyonu civarında kolayca incelenebilir (Chaput, 1936; Arni, 1947; Baykal, 1943; Erol, 1955). Literatürde

genellikle «Mesozoik ofiolitli fliş» (Mof), «ofiolitli seri» veya «Ankara Melanjının ofiolitli kısmı» olarak tanınır. Birçok değişik araştırmalara konu olabilecek nitelikteki Irmak formasyonunun ayrıntılı bir etüdüne bu çalışmalarda girişilmemiştir. Ancak, araştırmamızı ilgilendirdiği oranda, özellikle daha üstteki Ilıcapınar formasyonu ile ilişiğini kurmak ve doğudaki Yahşıhan formasyonu ile korelasyon yapmak gayesi ile, bazı mahdut kesitler yapılmış bulunmaktadır.

Kesitler

Irmak köyünün 4 km güneydoğusunda, Kızılırmak'ın keskin bir kavis yaptığı yerde, nehrin sol kıyısından batıdaki tepelere (Çanakçı tepe) doğru 1 km kadar uzanan, birbirinden takriben 1 km ara ile iki stratigrafik kesit yapılmıştır (35/17). Bu kesitler (Levha I) formasyonun sadece üst kısımlarını kapsamaktadır. Güneyde Kuşçu Ali doğusunda (24/02), kuzeyde de, Irmak'ın 8 km kuzeydoğusunda (38/26) üstteki Ilıcapınar formasyonunun tabanında görülen Irmak formasyonunda da bazı gözlemler yapılmıştır.

Irmak güneydoğusu (Kuzey kesiti). – Bu kısımdaki tabakalar 50-80 derece arasında değişen eğimlerle batıya dalar görünüyorsa da, gerçekte devrik olup, dereceli tabakalı arenitlerden anlaşıldığı üzere, üstleri doğuya bakmaktadır.

Bu bakımdan kesitin alt kısmı dağın yamacının ortalarında başlamakta ve Kızılırmak'a doğru üst tabakalara gelinmektedir (Şekil 3a). Kesitin başlatıldığı yeşil renkli tüfitler üzerine sırasıyla serpantin, yesil ve kırmızı radyolarit köseli cakılları ihtiva eden rudit (bres), kırmızı lütit arakatçılı amiqdoloidli bazalt (spilit) tabakaları, diabaz ve radyolarit elemanlı, yeşil lütit matrikşli rudit, yeşil tüfit tabakaları, koyu kahverenkli dereceli tabakalı ve taban akıntı yapıları gösteren arenitler ve bunlarla arakatgılı yeşil lütit, yeşil tüfit, kırmızı renkli ince dokulu kalker, beyaz renkli ince dokulu killi kalker ve yeşil tüfitler gelmektedir. İncelenen stratigrafik istiflenmenin toplam kalınlığı 500 m civarında olmakla beraber, üniteler teker teker yana doğru takip edildiğinde kalınlıklarının değiştiği, birkaçyüz metrede ise tamamen incelenerek kaybolduğu, yerine başka bir ünitenin geldiği görülür. Nitekim 1 km daha güneyden yapılan ikinci bir kesitte, yukarıdaki litolojiler aynen mevcut olmakla beraber birinci kesitteki ünitelerin devamı olup olmadığını tayin etmek güçtür.

Irmak güneydoğusu (Güney kesiti). – Burada da doğuya doğru devrik olan tabaka dizisinin alt kısmı olarak, yamacın üst taraflarında bariz olarak seçilebilen Aktaş tepesini meydana getiren beyaz kalkarenit tabakası seçilmiştir. Magmatik elemanlı ve tüf matriksli bir rudit üzerine oturan kalkarenit (Şekil 3 b) üzerine sırasıyla, ince tabakalı yeşil tüfit, magmatik elemanlı rudit, magmatik çakıllı kalkarenit, magmatik elemanlı rudit, koyu kahverenkli dereceli tabakalı arenit, lütit arakatgılı diabaz, serpantin, diabaz, yine serpantin gelmektedir. Faylı bir zondan sonra yeşilimsi gri dereceli tabakalı arenitler, kırmızı radyolaritli çört, beyaz renkli ince tabakalı kalker gelmektedir. Bunu takiben, muhtemer bir bindirme fayından sonra, Ilıcapınar formasyonunun iri volkanik elemanlı ruditleri yer alır.

Kuşçuali doğusu. — Ilıcapınar deresinde, Ilıcapınar formasyonunun alt sınırını işaretleyen fayın batısında, Irmak formasyonuna ait çeşitli ünitelerin karmaşık arakatgılı olarak bulundukları tabakalı kısımların, genel olarak birbirlerine paralel bir surette, doğuya doğru daldıkları görülmektedir. Esas malzemeyi yeşil tüfitlerin teşkil ettiği formasyonda, kırmızı radyolaryalı çört, mavimsi renkte tüfit, çok ince dokulu krem renkli veya sarı renkli ince tabakalı kalker (çok kıvrımlı), pilov yapılı diabaz, serpantin breşi tabakaları ile bazı kalkarenit blokları görülmüştür.

Irmak kuzeydoğusu. – Doğuya devrik olan tabakalar burada üstteki Ilıcapınar formasyonuna bir geçiş göstermektedir. Kızılırmak'ın doğu kıyısında görülen serpantinler üzerine yeşil tüfitler ile, bunların içinde yer almış magmatik elemanlı tüf matriksli rudit, çok kıvrılmış beyaz, pembe veya kırmızı renklerde ince tabakalı kalkerler, kırmızı çört ve kalker blokları ihtiva eden yeşil tüfitler, dereceli tabakalanma gösteren yeşil gri arenitler ile, burada Ilıcapınar formasyonunun tabanı olarak kabul ettiğimiz andezit, diabaz ve ultrabazik çakıllı tüfit (kalsit damarlı) gelmektedir. Bu kısmın toplam kalınlığı 200 m civarındadır (Şekil 3 c).

Alt ve üst sınırlar

Irmak formasyonunun alt sınırı sahamız dahilinde tayin edilmemiştir. Üst sınır hemen her yerde faylıdır, ancak sahanın kuzey doğusunda, üstteki Ilıcapınar formasyonuna geçiş görülür.

Eugey kesiti

187

Yanal sınırlar

Formasyonun yanal sınırları hakkında kesin birşey söylenemez. Ancak münferit ünitelerin genellikle merceksel olduğunu, incelenen her ünitenin yanal olarak nisbeten keskin bir şekille sona erdiğini belirtmek gereklidir. Örneğin, radyolarit çört tabakalarından oluşmuş 50 m kalınlığında bir ünitenin, tabaka doğrultusu boyunca her iki yönde incelenerek 250 m içinde tamamen kaybolduğu görülmüştür (Çanakçı tepe, 2 km KD).

Kalınlık

Irmak formasyonunun kalınlığının 2000 metreden çok fazla olduğu tahmin edilmektedir

Litoloji

Formasyon sahamızdaki mostralarında başlıca aşağıdaki litoloji cinsleri saptanmış olup, bunların ayrıntılı alt birimlerinin incelenmesine girişilmemiştir.

Ruditler. - En az dört çeşit rudit saptanmıştır :

- Magmatik elemanlı rudit (Yuvarlak çakıllı) : Bu çeşit ruditin elemanlarını 2 - 3 sm büyüklükte, iyi yuvarlanmış diabaz, spilit ve serpantin çakılları teşkil etmektedir. Matriks ise yeşil klorit ve feldispat kırıntılı tüflü malzemedir. Birkaç metre kalınlığında tabakalar halinde bulunur.
- 2 Magmatik ve radyolarit elemanlı rudit (Köşeli) : Bazik ve ultrabazik çakıllar köşeli olup, bunların arasına yine köşeli radyolarit çört (kırmızı ve yeşil) parçaları da karışarak kayaya bir breş görünüşü kazandırmıştır. Matriks malzemesi yine yeşil klorit ve tüflü arenittir. Bazı çört parçaları çok iri olabilmekte, bununla beraber bütün parçalar 2-15 sm arasında kalmaktadır. Birkaç metre kalınlıkta tabakalar halindedir.
- 3– Kırmızı ve yeşil radyolarit çört breşi : Köşeli çakılların % 95 i kırmızı (hakim) ve yeşil renkli radyolaritli çörtlerden ibarettir. Matriks çok azdır, klorit ve lütitten ibaret görünmektedir. Bu tip rudit kaim (8-10 m) tabakalar halinde görülmüştür.

- 4- Kalker klastlı rudit : Düzensiz yüzeyli yassılmış küreler (Klastlar) (3-10 sm caplı) halinde bulunan vesilimtrak beyaz çok ince dokulu kalker yumruları, yeşil renkli kalkerli bir lütit matriks icinde bulunmaktadır. Nadir olarak radyolarit çört blokları (köşeli, 10-30 sm) ile, ivi cimentolanmıs kuvarz taneli rudit blokları (50 sm) ihtiva etmektedir. (Kuvars taneli rudit bloku kırmızı renkli olup, çok iyi yuvarlanmış beyaz kuvars çakılları ile daha az miktarda kovu renkli vuvarlak bazalt cakıllarından oluşmuş, aynı cins arenitten mürekkep bir matriks ve kalsitle bağlanmıştır). Kalker çakıllı bir rudit tabakasının kalınlığı arazide 35 m olarak ölcülmüstür. Kalker yumrularından alınan bir nümunede taşın killi mikrit olduğu görülmüs, fosil tesbit edilmemistir. Ancak dağınık olarak bulunan birkac küresel sekilli. tamamen silisten ibaret form görülmüştür (muhtemelen silisifiye olmuş radyolarya).
- Arenitler. Sahada göze çarpan başlıca üç cinsi vardır :
 - 1 Volkanik arenit : Bazan masif görünüşlü, bazan da tabaka yapısı gösteren yeşil renkli tüfitler, köşeli kırıntılar ile bunların birbirine bağlıyan kloritli kalsit bir matriksten oluşmuştur. Mikroskop altında bazaltik cam (palagonit), devitrifiye olmuş volkanik cam, labradorit, biotit, piroksen parçaları, bazalt (akma yapılı) kırıntıları ve nadiren çört (radyoleryalı) kırıntıları görülmektedir. Püskürük malzeme % 70, matriks ise % 25 oranındadır. Bazı tabakalarda kalsit, bazılarında da tamamen silisli çimento vardır. Tabaka kalınlıkları birkaç metreyi bulabilir.
 - 2 Kahverenkli arenit : 10-20 sm kalınlığında, dereceli tabakalanma ve akıntı izleri (oygu, çarpma, oluk) gösteren kalsit çimentolu bu tabakalar, yeşil lütit tabakaları (5- 10 sm) ile arakatgılıdır. Karbonize olmuş bitki parçacıkları arenit içinde, paleo-akıntı doğrultusuna uygun şekilde yönlenmiş olarak mebzuldür (Ölçülen bir oygu yapısına göre akıntı kuzeydoğudan germektedir). İnce kesitte az yuvarlanmış kuvars, mikrokristalen ku-
Teoman Norman

vars, diabaz: kırıntıları, çört ve kalker parçacıkları görülür.

3 – Kalkarenit : Açık krem renkli kalkarenit, mikrit intraklastları ve bol miktarda diabaz ve cam kırıntıları ihtiva etmektedir. Takriben 150 sm kalınlığında olmakla beraber, yanal devamlılığı olmayan tabaka blokları halindedir; 100 m lik bir mesafede her iki yönde keskin bir şekilde biter.

Lütitler. — Gerek arenit tabakaları arasında, gerekse ruditlerin matriks malzemesi olarak bulunan lütit, açık veya koyu yeşil renklerde olup, kloritin hakim olduğu bir oluşuktur. Kırmızı renkli çörtlerle ve kırmızı kalkerlerle arakatgılı olan lütitler ise kırmızı renklidir.

Kalker. – Genellikle çok ince dokulu (porselen gibi) mikrit kalker, gri-beyaz, yeşilimsi-beyaz, sarı veya pembe kırmızı renklerde (sonuncular özellikle radyolarit çört veya diabazlarla arakatgılıdır) 1-5 sm kalınlıkta tabakalar halinde bulunmaktadır. İnce kesitte killi kalker içersinde serpili vaziyette küresel şekilli, kalsit veya kalsedoni ile rekristalize olmuş muhtemel mikrofosil kalıntıları görülmektedir. Kalkerler çoğu zaman birkaç metre dalga boylu kıvrımlar yapmakta, ancak bunlar komşu litoloji birimlerine geçmemektedir.

Radyolaryalı çört. — Kırmızı, pembe veya yeşil renkli 1 - 5 sm kalınlığında tabakalar halinde bulunan çörtler, zaman zaman kırmızı ince dokulu kalker veya kırmızı lütit tabakaları ile arakatgılıdır. Mikroskop altında düzgün kriptokristalen dokulu olup, silisifiye radyolarya ve bazı kil mineralleri ihtiva etmektedir.

Bu vasıflarıyla, ilk nazarda benzer yapı gösteren püskürük kökenli mikrokristalen kuvarstan veya devitrifiye volkan camından ayırdedilebilmektedir. Radyolaryalı çörtler içinde veya tabaka tabanında sedimenter yapılar görülememiştir.

Diabaz ve spilit. — Bazan bariz pilov yapılı, bazan aglomeratik, çoğu zaman da belirli bir yapı göstermeyen, ancak diğer ünitelerle arakatgılı 10-20 m kalınlığında tabakalar halinde bulunan bu lavlar, ince kırmızı killi kalker veya kırmızı kil bantları ile ayrılmış olabilir. Gri-yeşil diabazlar ve morumsu gri spilitler, muhtelif derecelerde serpantinleşme gösterirler, genellikle spilitler daha «taze» bir görünümdedir; çoğu zaman amigdoloidli dokular, mikroskopta ise akma dokusu gösterirler. Bazı 80- 100 sm kalınlığındaki diabazların, tüflü arenitleri sil veya dayk şeklinde kestiği görülmüştür. Bu durumlarda magmatik kayanın her iki yüzünde 1 - 2 sm kalınlığında kırmızı renkli bir oksitleşme zonu meydana gelmiş bulunmaktadır.

Serpantin. — Koyu ve açık renkleri, ışıldayan parlak cilalı yüzeyleri ile, serpantin bu formasyonun en göz alıcı birimini teşkil eder. 5-10 m veya bazan daha fazla kalınlıkta olabilen tabakalar, merceksel olup, birkaç yüz metre mesafede kaybolurlar. Hacım itibariyle formasyonun takriben % 10 unu teşkil ederler.

Sahada en çok görülen serpantin tipi, 10-30 sm çapında hafifçe yuvarlanmış, bazan cilalı yüzlü, koyu yeşil bloklar ile, bunların arasında matriks teşkil eden açık yeşil serpantin malzemesidir. Blokların muhtelif oryantasyonlarla bulunuşu ve bazan içlerinde bir gabro, diabaz veya kalker çakılının (veya bloğunun) bulunması, bloklaşmanın sadece bir ayrışma ürünü olmadığını, muhtemelen olistostrom tipi su altı akmalarının da yer almış bulunduğunu belirtmektedir.

Fosiller

Çalışma sahası dahilinde radyolaryalardan başka fosile, yazar tarafından, tesadüf edilmemiştir. Bununla beraber, özellikle tabakalı kalkerlerde silisleşmeden veya rekristalizasyondan korunmuş yerlerde, nadir de olsa bazı mikrofosillerin mevcudiyeti bilinmektedir.

Irmak ile Kızılırmak köprüsü arasındaki bölgedeki tabakalı kalkerlerde ve bunların kuzeye doğru uzantılarında Arni (1942), Baykal (1943), Erol (1954, 1955) ve Boccaletti et. al. (1966) muhtelif seviyelerde :

Calpionella alpina Calpionella elliptica CADISH Orbitoides trochus (FRITSCH) SILVESTRI Orbitolina conoidea grubu Praeglobotruncana stephani GANDOLFİ Globotruncana sigali REICHEL Globotruncana lapparenti grubu Heterohelix sp.

Globogerinella sp.

ve ayrıca Nowack (1928), Erol [1955) Aptikuslar saptamış, bunlar Üst Jura'dan Turoniyen'e kadar değişen yaşlar vermiştir. Bu formasyonun daha doğudaki uzanımında, Yozgat-Çiçekdağ bölgesinde ise Ketin (1955, 1963) muhtelif Globotruncana türleri (Turonien-Kampaniyen) kaydetmiş bulunmaktadır.

Yaş ve korelasyon

Irmak formasyonunun içinde bulunan en genç kalkerlerin yaşları genellikle üst Kretase, özellikle Turoniyen-Kampaniyen'dir. Ancak, bu bölgede, formasyonun sadece üst kısımlarının görüldüğü, gerçekte batıda İdris dağına doğru daha alt seviyelerin ve bu arada Jura yaşlı kalkerlerin de bulunduğu bilinmektedir (Erol, 1954). Irmak formasyonu, Ankara Melanjı'nın üst kısmını teşkil eden «ofiolitli seri» ile eş anlamlıdır (Erol, 1956).

Topoğrafya görünüşü

Genellikle koyu renkli kayaların hakim olduğu formasyon, bilhassa içinde bulunan ve aşınmaya dayanıklı olan volkanik malzeme (lav, aglomera) ile kalker ve radyolaryalı çört birimlerinden dolayı, yüksek, çıplak ve sivri çıkıntılı tepeler meydana getirirler. Dereceli arenit ve lütitlerin fazlaca olduğu yerlerde ise vadiler açılmıştır.

Yorum

Formasyonun en önemli özelliklerinden biri, birbirini takip eden seviyelerde, yüksek sedimenter enerji ortamlarını temsil eden malzeme (iyi yuvarlanmış magmatik kayaç çakılları, kuvars çakılları) ile, çok alçak enerji ortamlarına ait malzemenin (radyolaryalı çört, mikrit kalker, lütit) ardışıklı bulunmasıdır. Aynı şekilde, sübneritik ortam malzemesi (bitki kalıntılı, dereceli tabakalı, az köşeli taneli kahverenkli arenit) ile derin deniz malzemesi (globogerinalı kalkerler, radyolaryalı çörtler) de yine ardışıklı olarak bulunmaktadır. O halde, nisbeten sığ çökelme ortamı malzemesinin, nisbeten derin çökelme ortamı malzemesine kayma veya olistostrom yoluyla gelmiş olması gerekir (Rigo ve Cortesini, 1964;Abbate, Bortolotti ve Passerini, 1970). Bu sırada tüf malzemeli türbid akıntıları da doğu ve kuzeydoğu yönlerinden gelmektedir; ancak türbid akıntıların basenlerin uzun ekseni boyunca aktıkları, kayma ve olistostromların ise yamaçlardan aşağıya hareket ettiği bilinmektedir.

Köşeli radyolaryalı çört çakıllarından oluşan ruditlerle, köşeli veya düzensiz yüzeyli yumrulu kalker çakıllarından oluşan ruditler ise, daha değisik tip olistostromlara isaret etmektedir (Hendry, 1972). Bunlar, zaten nisbeten derin bir çökelme ortamında olusan sedimentlerin, bazen sertlestikten sonra, bazan da henüz yarı plastik haldeyken, harekete geçerek daha derinlere kaymalarını veya akmalarını temsil ederler. Bu olaylar esnasında derin ortamlara sığ ortamlardan gelmiş olan malzemenin de yeniden harekete geçmesi ve üçüncü bir ortama kayma, akma (olistostrom) ve türbid akıntı yoluyla gelmesi beklenebilir. Bütün bunların yanı sıra, daha eskiden teşekkül etmiş sedimentler (Jura) ile muhtelif ortamlarda ve muhtelif zamanlarda tesekkül etmis denizaltı volkanik kayaçların (diabazlar, spilitler ve serpantinler) bu hareketlerden etkilenmeleri ve kütleler halinde derin kısımlara doğru kaymaları da beklenir. Nitekim, magmatik kayaç aflörmanları da, çoğu radyolaryalı çört ve kalker aflörmanları gibi, birkaçyüz metre uzunlukta mercekler halindedir; hattâ çoğu zaman bundan çok kısadır. Kloritli bir matriks içinde düzensiz yönelmeli bloklar halinde görülen ve yabancı bloklar veya çakıllar ihtiva eden serpantinlerin de, ilk oluşma ortamlarından buraya oliştostromlar halinde gelmeleri mümkündür (Boccaletti et. al. 1966, s. 492).

Irmak formasyonuna ait bu özellikler, doğrudan doğruya şiddetli fay tektoniği ile izah edilmeğe çalışılmışsa da (Baykal, 1943; Bailey ve Mc-Callien, 1953), bu derece şidetli bir tektonikten beklenen dinamometamorfizma etkilerinin yokluğu (Egeran ve Lahn, 1951), hattâ serpantinler dışındaki kayalarda belirli bir çatlama dilinimi (fracture cleavage) bile görülmeyişi, böyle bir yorumun aleyhinedir. Serpantinlerde görülen dilinim ve lineasyonların ise, şiddetli bir tektonikte beklenen iyi yönlenme yerine, hemen hemen rastgele (random) bir yönlenme gösterdikleri de bir vakıadır (Boccaletti et. al., 1966, s. 490).

Bahsedilen bu özelliklerin izahı, sualtı heyelanları, olistostromlar ve türbid akıntı faaliyetleri ile kolayca yapılabilmektedir (Gansser, 1959). Başka bir deyimle, büyük çapta naplar ve şaryajlar yerine, büyük çapta sualtı heyelanları düşünmek, daha çok sayıda soruna cevap vermektedir.

Burada dikkati çeken önemli bir husus da, sığ ortam malzemesinin derin ortam malzemesi yanına gelmesinden sonra, beraberce daha derinlere kaymaları veya akmalarıdır. Bu durum, derin tabanda çökelen lütit ve radyolaryalı çört gibi malzemenin bulunduğu seviyeden (Radyolaryalı kalkerler için 5000 - 6000 m, Mitchel, 1970) daha derin çukurların bulunduğunu ve önceden yatay olan deniz tabanının bu çukurlara (veya çukura) doğru meyil kazandığını göstermektedir.

Irmak formasyonunun yaklaşık olarak % 60 ını teşkil eden volkanik arenitler, bünyelerindeki terijen malzemenin azlığı ile, daha ziyade bir sualtı oluşumu mahiyetindedir. Denizaltı volkanik patlamalarda ani soğuyan tüf malzemenin, türbid akıntılar ve olistostrom tipi akmalarla basene yerleşebildikleri başka yerlerde gösterilmiştir (Fiske ve Matsuda, 1964). Bu tip volkanik arenitlerin gerek Irmak formasyonunda, gerekse «ofiolit» tabir edilen birçok formasyonlarda mebzul olduğu kanısındayım.

Yukardaki görüşlerin ışığı altında formasyonun teşekkül zamanı iki tarzda izah edilebilir: Birinci tarzda, formasyon bir konglomera gibi düşünülürse, oluşum yaşının içindeki en genç (Kampaniyen) elemandan daha genç olması, yani bütün teşekkülün Mestrihtiyen yaşlı olması gerekir. Ancak bu izah tarzı, en az Elmadağ'dan bu sahaya kadar yer alan, kaba da olsa, bir stratigrafik yaş sıralanmasının nedenini açıklamaya yetmez (Erol, 1956). İkinci izah tarzı ise, sualtı heyelan ve kayma olaylarının muhtemelen Alt Kretase'den (belki daha önceden) beri devam ettiği, bir tarafta çökelen kayaçların bir zaman sonra daha derin bir çukur kayarak yerleştiği, üzerlerine daha sonra oluşan genç olistostromların geldiği şeklindedir.

Bu izah tarzından, Mestrihtiyen'de artık bu olayların şiddetini kaybetmeğe başlamış olduğu sonucu çıkar; bu da, müteakip formasyonların karakterlerine daha uygun düşmektedir. Bu izah tarzı kabul edildiği takdirde, formasyonun yaşının en az Alt Kretase'den Kampaniyen'e kadar uzanması gerekir.

Bu yorum esasları dahilinde, İrmak formasyonunun üst kısımlarının Kretase süresince derinleşmekte olan bir basende teşekkül ettiği ortaya çıkmaktadır. Bu basenin esas çökelme malzemesi yeşil lütitler ve volkanik arenitler olup, diğer kayaçlar sualtı heyelanları, kaymalar, olistostromlar ve türbid akıntılar ile buraya dahil olmuştur (Blumenthal, 1948, s. 69). Sığ ortam ve terijen malzemenin az oranda bulunması, karaların yükselmesinden çok, deniz tabanının çöktüğüne işaret edebilir.

Bu olayların cereyan ettiği çökme (çukurlaşma) hareketi Mestrihtiyen'de şiddetinden biraz kaybetmeğe başlamış gözükmektedir. Nitekim, Irmak formasyonun üstüne gelen Ilıcapınar formasyonu çoğunlukla tüf malzemeli türbiditler olarak bulunmakta, daha az oranda kayma ve akma mahsulleri ihtiva etmektedir.

Ilicapinar formasyonu

llıcapınar formasyonu yeşil renkli tüf malzemeli arenit ve suda çökelmiş rudit tabakalarından oluşmuştur. Formasyonun kalınlığı güneybatıda en az 1250 metredir; sahanın kuzeydoğusuna doğru gidildikçe, kısmen batıdan bindirme ile gelen Irmak formasyonunun örtmesi, kısmen de az gelişme sonucunda, llıcapınar formasyonunun görünen kalınlığı azalır; hattâ yer yer kaybolur (Levha II).

Tip yeri ve kesiti

Çalışma sahasında llıcapınar formasyonu en geniş tezahürünü, Kuşçuali köyünün yaklaşık olarak 4 km. DGD'sunda llıcapınar civarında gösterir. Bir buçuk kilometre genişliğindeki mostra Ilıca dere tarafından kesildiğinden, formasyonun incelenmesine uygun bir kesit meydana gelir.

llıcapınar formasyonu daha kuzeyde, Bölük Dağ'ın batısında, Kızılırmak'ın iki yakasında da incelemek mümkündür; ancak burada mostranın bir kısmı alüvyonlar altında kaldığından bütün kesit devamlı olarak görülmez. Çalışma sahamızın kuzey kısımlarımda, eski Kalecik-Mahmutlar-Kırıkkale şosesi boyunca llıcapınar formasyonu tezahür ederse de, yolun bozuk ve sapa olmasından ötürü burası inceleme yönünden pek elverişli değildir.

Ilıca Dere kesiti. – Genellikle 60 derece eğimle SE yönüne dalan tabakalar yer yer dikleşir ve 80 derecelik eğimler kazanır. Formasyonun tabanı bir bindirme fayı ile kuzeybatıdan gelen Irmak formasyonu altında kaldığından görülmez. İncelenebilen en eski tabakalar mor renkli, tabakalanmış ruditler ile bunlarla arakatgılı olan yeşil renkli tabakalı arenitlerdir. Formasyonun alttaki 300 m. lik bir kalınlığında ruditler hakimdir. (Şekil 4). Bunu takip eden 550 metrelik bir kısımda ise, herbiri birkaç metre (bir tanesi 20 m.) olan kalın, yeşil renkli tüf malzemeli arenitler ile, bunlarla arakatgılı olan ince (ortalama 50 sm.) volkanik arenitler görülür. Bu kısımda kalın arenit tabakaları hakim durumdadır. En üst 400 metrelik kısım ise ince (30-50 sm.) arenit tabakalarından oluşmuştur. Bu kısımda yer yer kalın arenit tabakalarına tesadüf edilirse de, bunlar azdır. ince arenit tabakaları ile arakatgılı olarak lütit (miltaşı) horizonları da görülmektedir. Bu kesitte arenit tabakalarının en üstünde bulunan 12 m. kalınlığında lütit tabakaları, üstteki Bölükdağ formasyonuna normal geçişi temsil ederler.

Bölük Dağ batısı. — Bölük Dağ batısında, Ilıcapınar formasyonu tabakaları 30-50 derece eğimle batıya dalar görünürse de, gerçekte bunlar devriktir (Şekil 5, E-F kesiti). Bu sebepten, formasyonun alt kısımları daha batıda, Kızılırmak nehrinin batı yakasında tezahür eder. Toplam olarak 550 metrelik bir kalınlık gösteren formasyonun taban kısmı, bindirme fayı ile gelen Irmak formasyonu altında kaldığından görülemez. İncelenebilen en alt kısım 10 metre kalınlığında bir rudittir. İyi yuvarlanmış bazik ve andezitik volkanik parçaların yanısıra, köşeli kumtaşı blokları ve yine köşeli kalker blokları da ihtiva eden bu ruditin matriksi yeşil tüf malzemesidir. Daha üstte birkaç metre kalınlığında tabakalar halinde

kalın arenitler bulunur. Yeşil-kahverengi bir renk gösteren bu tabakaların toplam kalınlığı takriben 40 metredir. Bu kısmın üzerine de 500 metre kalınlığında bir kısım gelir ki, ince (10-50 sm) tabakalı arenitler ile, bunlarla arakatgılı birkaç kalın arenit ve rudit tabakalarından oluşmuştur. Formasyonun bu kısmı kesitte kısmen Kızılırmak alüvyonları altında kalmaktadır. Ancak en üst tabakalar Bölük Dağ batısında, Kızılırmak'ın doğu yakasında incelenebilir. Burada, koyu renkli lütitlerin llıcapınar formasyonunun tüflü arenit tabakaları üzerine konkordan olarak geldikleri görülmektedir.

Kalecik - Mahmutlar yolu. — Kızılırmak'ın doğusunda yer alan llıcapınar formasyonu mostrası bir kilometreyi aşkın bir genişliktedir. Tabakalar 60-80 derece eğimle batıya dalar, doğuya doğru devrilmişlerdir. Formasyonun ölçülen kalınlığı 900 m dir. Bunun alttaki 400 metrelik kısmı kalın arenit ve ruditlerden ibaretti. En altta, Irmak formasyonu üzerinde konkordan gibi görünen kalın (50 m) bir rudit tabakası vardır. Bu ruditin elemanları kırmızı kalker, radyolarit ve kumtaşı blokları ile bazik ve andezitik kayaçlardan müteşekkil olup, tüf malzemeli bir matriks içinde bulunurlar. Formasyonun 500 metrelik üst kısmı, ince tabakalı yeşil renkli tüflü arenitlerden oluşmuştur. En üstte, Bölükdağ formasyonunun lütit ve arenit tabakaları konkordan olarak görülür.

Alt ve üst sınırlar

llıcapınar formasyonun alt sınırı çalışma sahasının büyük bir kesiminde faylıdır. Bununla birlikte, formasyonun görülebilen alt tabakaları ile, stratigrafik yönden daha alttaki Irmak formasyonunun tabakalı kumları arasında sıkı bir eğim ve litoloji benzerliği bulunmaktadır. Sahanın en kuzey kısmındaki aflörmanlarda ise llıcapınar formasyonu Irmak formasyonu üzerinde konkordan olarak görünmektedir. Hemen belirtilmelidir ki, Irmak formasyonun buradaki karışık yapısı ile llıcapınar formasyonunun tabanındaki karmaşık ruditten dolayı, kesin bir yargıya varmak çok güçtür; fakat her iki formasyon tabakalarının eğimleri birbirine tamamen uymaktadır.

llıcapınar formasyonun üst sınırı, saha dahilinde her yerde Bölükdağ formasyonu ile konkordandır. Güneyde 10-12 m kalınlığında bir lütit bu sınırı belirlerse de, kuzey kısımlarda Bölükdağ formasyonunun sarı renkli arenitleri doğrudan doğruya Ilıcapınar formasyonunun yeşil renkli kayaçları üzerine oturmaktadır.

Yanal sınırlar

Ilıcapınar formasyonunun yanal sınırlarını saha dahilinde tesbit etmek mümkün olmamıştır. Güneybatıdan kuzeydoğuya doğru bir şerit halinde uzanan formasyonun zaman zaman incelip kaybolması, yanal değişmelerden ziyade faylanmalar ve gerçek kalınlık değişmeleri ile ilgili görünmektedir.

Kalınlık

llıcapınar formasyonu en büyük kalınlık gelişmesini güneybatıda gösterir; ölçülen 1250 m kalınlık sadece görünen kısım olup, muhtemelen birkaçyüz metrelik bir kalınlığın da Irmak formasyonunun altında bulunması beklenebilir. Kuzeydoğuya doğru gidildikçe formasyonun gerçek kalınlığında biraz azalma olduğu sezilmektedir. Kalecik - Mahmutlar yolu kesitinde, ölçülen gerçek kalınlık 900 m. olup, bariz bir incelmeğe işaret eder. Buna karşılık, Bedesten kuzeyinde ve Kızılırmak köprüsü civarında formasyonun yer yer kaybolması, muhtemelen doğrudan doğruya bindirme fayının altında kalmasından ileri gelmektedir.

Litoloji

Rudit. — Daha çok formasyonun alt kısımlarında görülen rudit tabaka üniteleri, köşeli bazaltik (spilitik) ve andezitik kayaç parçaları, kırmızı ve beyaz kalker blokları, çört ve radyolarit parçaları, kahverenkli köşeli arenit blokları, az miktarda serpantin blokları ile bunları taşıyan: ince tüf malzemeli bir matriksten oluşmuştur. Bu elemanların hepsi, alttaki Irmak formasyonunda da tabakalar veya tabakalardan müteşekkil bazan yüzlerce metre boyutlu bloklar halinde bulunmaktadır. Ruditlerde laminasyon görülmez; bazı ünitelerin üst kısımlarına doğru kaba bir tabakalaşma sezilmektedir. Rudit tabakalarının, kendi içlerindeki kaotik duruma karşılık, alt ve üst sınırlarının birbirine ve arakatgılı arenit tabakalarına paralel olduğu müşahade edilmiştir. Bu tabakaların kalınlıkları bir ilâ birkaç metre arasında değişmektedir.

Arenit. – Genellikle yeşil renkli, bazan da limonit teşekkülü ile sarımsı renkli olan bu tabakaların kalınlıkları birkaç santimetreden birkaç metreye kadar değişmektedir. Tane boyu ortalaması 500 mikron civarında olup, boylanma kötüdür (poorly sorted). İnce kesitte arenitlerin şu parçacıklardan müteşekkil olduğu görülür:

Teoman Norman

- 1 Hacımca kayacın % 50'sini bazaltik, spilitik ve trakibazaltik köşeli kayaç parçacıkları teşkil eder. Tüf breşi olarak görülen bu parçacıklarda sanidin ve labradorit kırıntıları, devitrifiye bir cam hamur içinde bulunmakta, kalsit dolu amigdollar ihtiva etmektedir. Parçacıklardan bir kısmı da trakitik bir akma dokusu (flow texture) göstermektedir.
- 2 Sanidin ve ortoklaz, yaklaşık olarak % 5 hacim işgal eder. Köşelidir; alterasyon gösterirler.
- 3 Labradorit, % 15-20, köşeli parçalar, bazan alterasyongösterir.
- 4 Piroksen ve biotit, az görülen köşeli parçalar halindedir.
- 5 Kuvars, genellikle % 5 veya daha azdır. Ergime yoluyla yuvarlaklaşmış (resorbed) kristaller ile, çok keskin köşeli parçalardan ibarettir. Mikrokristalin yapıda bileşik kuvars'ın da devitrifiye cam hamur olması mümkündür.
- 6 Kısmen yuvarlanmış veya tamamen köşeli ince dokulu kalker parçaları ile, taşınmış ve aşınmış foraminiferler de mevcuttur. Hacım itibariyle % 5 civarındadır.

Bütün bu malzeme, kalsit, limonit, klorit ve glokonitten ibaret bir matriks içinde bulunmaktadır. Kalsit çimento vazifesini gördüğü gibi, kısmen de bazı kuvars ve alkali feldispatların yerini almaktadır (partial replacement).

Birkaç santimetreden birkaç desimetreye kadar kalınlığı olan arenit tabakalarında türbidit tipi (Pettijohn, 1957, s. 171) dereceli tabakalanma (graded bedding), taban akıntı yapıları (sole current structures) ve mil peletleri (mud-pellets) mevcuttur. Kalınlıkları birkaç metre mertebesinde olan arenitlerde ise taban ve iç yapıları bariz değildir. Bu tabakaların içinde, kıvrılmış tabakalı arenit blokları ve köşeli kalker blokları arenit bir matriks içinde «yüzer» vaziyette görülmektedir. Bu parçaların boyları bazan 2 metreyi bulmakta, uzun eksenleri (ve varsa dahili tabakalanmaları) arenit tabakasının alt ve üst sınırlarına kabaca parelel durmaktadır. Arenit içinde, iyice parçalanmış rudist, lamellibranş ve gastropod kavkıları da görülür. İnce tabakalı arenitler içinde bazan, sedimantasyon sırasında teşekkül etmiş heyelanlar (internal slumping, prolapsed bedding; Dzulynski ve Walton, 1965, s. 190), Ilıca Deresi kesitinde ve Bölük Dağ batısında, Kızılırmak'ın batı yakasında, görülür.

Lütit. –Ilıcapınar formasyonunda lütitler hacımca çok az bir yer işgal eder. Genellikle ince arenit tabakalarının arasında, koyu gri, yeşilimsi gri renklerinde görülür. Birkaç santimetre kalınlıkta tabakalar halinde olup, ince laminasyondan başka bir sedimenter yapı göstermezler. Kalsit çimentolu klorit ve diğer kil ve tüf minerallerinden teşekkül etmiştir.

Fosiller

llıcapınar formasyonu içinde tayin edilebilen fosile rastlanmamıştır. Parçalanmış olarak görülen rudist, lamellibranş, gastropod kavkıları ile foraminiferler tayin için elverişsiz olacak şekilde bozulmuş durumdadır.

Yaş ve korelasyon

Hernekadar Ilıcapınar formasyonu fosilleri kesin bir yaş tayini için faydalı değilseler de, alttaki Irmak formasyonu (Senoniyen) ve üstteki Bölükdağ formasyonu (Mestrihtiyen) arasındaki pozisyonu dolayısıyla formasyonun yaşının muhtemelen Alt Mestrihtiyen olduğu düşünülebilir. Rudist parçaları da bu fikri desteklemektedir. Bu çalışma sahasına en yakın detay etüd alanı olan Haymana bölgesinde yapılan çalışmalar (Yüksel, 1970), Haymana formasyonunun muhtemelen Ilıcapınar ile korele edilebileceğini göstermektedir (Çizelge I). Ancak Ilıcapınar formasyonunda, Haymana formasyonunun aksine, kalker ve lütit horizonları az, buna mukabil tüflü arenit horizonları hakim durumdadır.

Topoğrafya görünüşü

llıcapınar formasyonu genellikle altındaki ve üstündeki diğer formasyonlara nispetle daha kolay aşınmaktadır. Bu bakımdan, daha ziyade alçak tepeleri ve çukur yerleri meydana getirmektedir. Çok kalın olan volkanik arenit tabakaları da, dahili bir tabakalanma göstermedikleri zaman, geniş yuvarlak tepecikler oluşturur ve özellikle eğim yön ve miktarlarının tayininde zorluk çıkarırlar.

KORELASYC
CALISMALARLA
ÖNCEKI
- CIVARDAKİ
Cizelg

.

	F. SAYKAL	0. EROL	RIGOVeCORTESINI	RECKANP ve	S. YÜKSEL	T. WORMAN, 197	c1
	1945	1954	1960	ÖZBEY, 1960	1970	Yahşıhan	118 1).
	Idris Dag	Küre Dağı	Ş.Koçhisar Haymana	Çankırı	Kaymane	Batı	Doğu
ALT OLIGOSEN	Jåpsli seri	Eski jipsli	Mazgit	Alt			
PRÍABONIYEN				Kırmızı Tahakalar		Bahşili	Bahsili
LÜTESİYEN			Eski Polatlı		HARHOR CAYRAZ	Kecili	Keelity
İ PRE Sİ YEN	Yahşıhan Serisi	Teşil marn,gre Sarı kumtaşı	unit	Serisi	Kąrahoca Kongl		Suler's
		Beyaz kalker	Kartal		Gedik	Настралт	Mahmur Jar
PALEOSEN		KITMIZI Gre	Kirkkavak	Paleosen kum ve	Kadıköy	Dizilitaşlar	my kar she
			unit	çakılları	Çaldağ		Erozyon
MESTRIHTIYEN			Asmaboğazı u. Kcaldaş unit 1		Kavak	Bölükdağ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Na vite of the second s	Serpantin		Haymana unit	Ankara	Haymana	Ilıcapınar	Yahşıhan
NETTWARAN	radyolarit	Ankara		Melanjı	Yılanlıhisar	Irmak	
SANTONIYEN	serisi	Melanjı'nın ofiolitli üst kısmı			Kocatepe		t Sigle Victoria At the

100

Yorum

llıcapınar formasyonun muhtelif özelliklerinin aşağıdaki yorum çerçevesinde birleştirilmeferi mümkün görülmektedir: Ruditler basit bir aglomera, konglomera veya breş olmayıp, bir denizaltı volkanizması sonucunda (Fiske ve Matsuda, 1964) veya muhtemelen bu tipte kayaçların teşkil ettiği bir kütlenin sualtı heyelanı (Dott, 1963) tarzında kayması sonucunda olmuştur. Bu tarzda başlayan heyelan, arenit ve lütit malzemenin miktarına bağlı olarak plastik bir kütle akışına (mass flow), hattâ viskoz bir akışa (turbidity current) dönüşebilir. (Kuenen, 1967; Middleton, 1966). Yolları üzerine çıkan fosil kavkılarını ve iri konsolide tabaka parçalarını da bünyesine alan bu akıntılar, bu maddeleri parçalayabilir (öne yakın kısımlarda) veya tamamen muhafaza edebilir (özellikle üst ve geri kısımlarda).

llıcapınar formasyonunun ruditleri karmaşık iç bünyelerine karşılık tabakalı üst ve alt sınırları ile tipik olistostromlara, arenitleri ise gerek sediment yapıları gerekse dereceli tabakalanmalara, arenitleri ise gerek sediment yapıları gerekse dereceli tabakalanmaları itibarıyla, türbiditlere işaret etmektedir. Bu tabakalar sualtı heyelanlarının elastik-plastik-viskoz bütün safhalarım temsil etmektedir.

Sualtı heyelanlarının oluşması, mükerrer olarak basen zemininin sarsılmasına (deprem, volkanik patlama) ve bir taraftan da süratli bir şekilde sedimentlerin heyelan olacak yerlerde birikmesine bağlıdır. Bu durum, tektonik bakımdan çok aktif bir sahayı, örneğin bir adalar yayı (ısland arc) bölgesini belirtebilir. Arenit malzemenin yarısından fazlasını teşkil eden alkali bazalt volkanik malzeme, özellikle kalsik plajioklazlar böyle bir görüşü desteklemektedir (Mitchell ve Reading, 1969; Mitchell, 1970). Kolaylıkla hava aşınmasından etkilenen ve taşıma sırasında kolayca yuvarlaklaşan kalsik plajioklazların bu sedimentlerde nisbeten az bozulmuş, köşeli taneler halinde bulunması, sedimentlerin kısa mesafelerden süratle getirildiklerine işaret etmektedir (Folk, 1968, s. 102).

Sediment yapılarının korunmuş olması, nihaî çökelmenin dalga aşınma tesir sahasının çok altında bir derinlikte yer aldığını göstermekte, lütit malzeme ise bu derinlikte normal olarak gelişen sedimenti temsil etmektedir.

Teoman Norman

Yukarıdaki yorum şekline dayanarak, Mestrihtiyen başlarında bu bölgede derin bir basenin bulunduğu, normal lütit sedimentlerine ilâveten sık sık türbid akıntıların, bazan da olistostromların sediment getirdiği anlaşılmaktadır. Turbiditler ya olistostromlardan, ya da denizaltı volkan patlamalarından, veya volkanik adalardan erozyonla gelerek şelf kenarında biriken malzemenin yer sarsıntılarıyla aşağılara heyelanla kayması sonucunda oluşmaktadır. Sonuncu ihtimali destekleyen bir husus, muhtemelen bu gibi adalar çevresinde gelişen resiflerden kopan parçaların (rudist ve lamellibranş kavkıları) sedimentlere karışmış bulunmasıdır.

Bölükdağ formasyonu

Bölükdağı formasyonu bir dizi sarı renkli, dereceli tabakalı arenitler ile bunlarla arakatgılı koyu gri renkli lütitlerden müteşekkildir. Nadiren kalın rudit tabakalarına da rastlanır.

Güneybatıdan kuzeydoğuya doğru uzanan formasyonun mostra genişliği yer yer değişir. Ilıcapınar formasyonu üzerine konkordan olarak gelen Bölükdağ formasyonunun üst sınırı sahada her yerde faylıdır. Görülebilen kalınlığı 450- 750 m arasında değişmektedir. Çeşitli sediment yapıları gösteren arenitlerden Mestrihtiyen'i temsil eden fosiller elde edilmiştir.

Tip yeri ve kesiti

Formasyon sahada en iyi gelişmesini Bölük Dağ'da, asfalt yol ile Kızılırmak nehri arasında (36/16) gösterir. Ayrıca güneyde Ilıca Dere vadisinde (27/02), Kuzeyde ise eski Kalecik-Mahmutlar yolunda (39/24) formasyonu incelemek mümkündür.

Bölük Dağı kesiti. — Tamamen doğuya devrik olan tabakalar, batıya ve batı-kuzeybatıya eğimlidir (Şekil 5, E-F kesiti). Formasyonun alt kısmı bu sebepten en batıda, demiryolu tüneli civarında görülür. Burada, 12 m kalınlığında bir yeşil tüflü arenit ile onun üzerindeki 17 metrelik ince «şerit» tabakalı (2-5 sm) yeşil tüflü arenit Ilıcapınar formasyonunun en üst kısımlarını teşkil eder. İnce «şerit» tabakalı kısmın ortalarında, arakatgılı olarak, bazı sarı arenit tabakaları (20-30 sm) da mevcuttur. (Şekil 6). Bölükdağ formasyonu sarı renkli, 50-60 sm kalınlıkta arenit tabakaları ile konkordan bir tarzda başlar.Toplam olarak 20 m bir kalınlık teşkil eden bu kısım ince (birkaç sm) lütit tabakaları ile arakatgılıdır. Arenitler çoğunlukla dereceli tabakalanma, sedimenter taban yapıları ve muhtelif iç yapıları gösterir. 2 km daha kuzeyde bu seviyeye rastlayan kısımda sarı bir rudit tabakasının da bu arenitlerle arakatgılı oldukları görülmüştür. Daha üstte 30-40 m kalınlığında bir kısım koyu gri renkli lütit ile bunlarla arakatgılı olan ince (1 -5 sm) sarı arenit tabakalarından ibarettir. Arenitlerin, hepsi olmamakla beraber, pek çoğu sedimenter taban yapıları, dereceli tabakalanma, bazıları da sedimentasyon sırasında oluşmuş sualtı heyelanları gösterirler (Şekil 7). Müteakip 500 metrelik bir kısım ise 10-30 sm kalınlıkta sarı ve kahverengi arenit tabakaları ve bunlarla arakatgılı gri lütitlerden oluşmuştur. Formasyonun en üst kısımı fayla kesilmiş olduğu için görülmez.

Ilica Dere kesiti. — Kuşçu Ali köyünün 5 km güneydoğusunda (27/02) Ilica Derenin yukarı kısımlarında (yersel olarak burada «Çıra yokuşu Deresi» adını almaktadır) Bölükdağ formasyonunun konkordan olarak Ilicapınar formasyonu üzerine geldiği görülür.

Üst sınır burada faylıdır; yüksek eğimlerle güneydoğuya dalan

kesiti (Ölçeksiz)

formasyonun görülebilen toplam kalınlığı 450 metredir; ancak 1 km kadar KD'da bu kalınlığın 700 metreye yaklaştığı görülmektedir. Ilıcapınar formasyonunun en üst kısımlarını teşkil eden tüflü ince arenitler ve arakatgılı koyu gri lütitler üzerine konkordan olarak 15 m kalınlığında bir lütit dizisi gelir ki, ince (3-5 sm) kalınlıkta dereceli tabakalanma gösteren sarımsı arenitlerle arakatgılıdır. Bundan sonra 400 m lik bir kısım, 20-50 sm kalınlığında sarı arenit tabakaları ile arakatgılı ince 2-10 sm) lütitlerden ibarettir. Daha üstte 20 m kalınlığında pembemsi renkli iyi çimentolu sert arenitler ile yine sarı arenitler gelir.

Kalecik - Mahmutlar yolu. — Batıdaki Sivri tepe ile doğudaki Sarı tepe arasında, yol boyunca, mostralarda görülebilen Bölükdağ formasyonu tabakaları, dik ve biraz doğuya devrik olup, 70 derecelik bir eğimle batıya dalar. Alt kısım konkordan olarak yeşil' tüflü arenitlerden teşekkül eden Ilıcapınar formasyonu üzerine gelir; 30-40 sm kalınlığında sarı - kahverenkli arenitlerden ve bunlarla arakatgılı çok ince lütitlerden oluşmuştur. Yaklaşık olarak 500 m kalınlık süresince litoloji değişmez. Formasyonun üst sınırı faylıdır.

Alt ve üst sınırlar

Bölükdağ formasyonunun alt sınırı heryerde alttaki Ilıcapınar formasyonu ile konkordan, hattâ bir dereceye kadar tedrici geçişlidir. Sarı renkli arenit tabakaları, Ilıcapınar'ın üst kısımlarında yer yer tezahür eder. Koyu gri renkli lütitler ise her iki formasyonda da görülür.

Formasyonun üst sınırı heryerde faylı olduğundan, saha dahilinde bu sınırın sedimenter durumunu tayin etmek mümkün olmamıştır.

Yanal sınırlar

Saha içinde Bölükdağ formasyonu belirli bir şekilde yanal geçiş göstermekte, sahanın güney-güneybatısından kuzey-kuzeydoğusuna doğru, fay kesilmeleri hariç, uzanmaktadır.

Kalınlık

Bölükdağ formasyonunun üst sınırının heryerde faylı olmasından dolayı kesin kalınlıkların hesaplanması mümkün olmamıştır.

206

Güneybatı kısmında görülebilen en fazla kalınlık 700 m olup, Bölükdağ civarında 550 m, daha kuzeyde ise 450 m ölçülmüştür.

Kuzeye doğru gidildikçe formasyonun görülebilen kalınlığının daha da inceldiği müşahade edilmektedir. Kanımca bu incelme, kısmen faylanmaya bağlı olmakla beraber, kısmen de gerçek bir incelmeyi yansıtmaktadır.

Litoloji

Rudit. — Bölük Dağ'ın 2 km kuzeyinde Kızılırmak doğu kıyısında görülen bir rudit tabakası, yaklaşık olarak 2 m kalınlığında olup, altında ve üstünde bulunan arenit tabakaları ile tamamen konkordandır. Bazalt, andezit, yeşil tüf, serpantin, kahverengi arenit bolder (boulder) ve blokları ile sürüklenmiş rudist parçaları ve komple sürüklenmiş rudistler, arenit malzemeli bir matriks içinde bulunur. Tabakanın içinde veya tabanında herhangibir sedimenter yapı görülmemiştir. Arenit matriksin malzemesi diğer arenit tabakalarından farksızdır. Çakıl ve bolderlerin boyutları 5-25 sm arasında değişir, köşeli olan bloklar ise daha da iridir.

Arenit. – Bölükdağ formasyonunun en hakim litolojisi arenitler olup, tabaka kalınlıkları birkaç santimetreden birkaç desitmetreye kadar değişmektedir. Ortalama tane boyu 350-500 mikron arasındadır, yer yer daha büyük olabilir. Boylama kötüdür. İnce kesitte arenitlerin aşağıdaki malzemeden teşekkül etmiş olduğu görülür:

- 1 Bazalt, trakibazalt yapılı köşeli parçacıklar; yaklaşık olarak hacımca % 30-40.
- 2 Kalsik plajioklaz (Labradorit), köşeli, bozulmamış, % 0-10.
- 3 Alkali feldispat (sanidin veya ortoklaz), kısmen bozulmuş % 0-10.
- 4 Volkanik kuvars, sivri köşeli parçacıklar veya bazan resorbsiyon girintileri gösteren yuvarlaklar halinde, % 5-10.
- 5 Mikrokristalen kuvars agrega (muhtemelen devitrifiye olmuş volkan camı), köşeli parçacıklar, % 20-40.
- 6 Kalker parçacıkları, bazıları köşeli, bazıları ise biraz yuvar-

laklaşmış, % 0-10.

- 7 Mikro ve makro fosil kavkıları.
- 8 Az miktarlarda biotit, piroksen, palagonit (bazik volkan camı) ve çört (radyolarit) de görülmektedir.

Bütün bu elemanlar, kil mineralleri, epidot ve kalsitten müteşekkil bir matriks (% 15-20) içinde taşınmaktadır. Kalsit, bir çimento vazifesini de görmekte olup, yer yer bazı feldispatların kısmen yerini almaktadır. (Replacement).

Bölükdağ formasyonu arenitlerinde çimentolaşma iki şekilde tezahür etmektedir: Çok iyi çimentolaşmış sert tabakalarla arakatgılı olarak, az çimentolanmış gevrek ve yumuşak yapılı tabakalar da vardır. Malzeme cinsi bakımından aynı görünen bu arenitlerin çimentolaşmadaki farkları henüz yazar tarafından izah edilememiş olmakla beraber, porozite ve permeabilite farklılığından ileri gelebileceği düşünülmektedir. Bu iki cins çimentolaşmayı gösteren kumlar, değişik sahalardan (source areas) gelmiş olabilir; ancak konuda da akıntı yönleri bakımından keskin bir delil elde edilememiştir.

Formasyona hakim olan sarı rengin limonitleşme gösteren demir oksitten ileri geldiği anlaşılmaktadır; taze kırılmış ve hava etkisinden korunmuş olan yüzeylerde, özellikle iyi çimentolaşmış kayacın gri renkli olduğu görülmektedir.

Arenitler içinde muhtelif sedimenter taban yapıları (oygu, oluk, saplanma, sıçrama, kayma izleri), hiyerolifler (canlı yürüme ve sürünme izleri) ile bol miktarda türbidit tipi dereceli tabakalanma görülmektedir. Ayrıca tabaka arası sualtı heyelanlarına (inter-stratal submarine slumping) da, özellikle Bölük Dağ batısında, Kızılırmak'ın doğu kıyısındaki aflörmanlarda rastlanmıştır. Tabaka içi yapılardan konvolut laminasyon ve «ripple-drift» görülmemiştir; düzgün paralel laminasyon mevcuttur.

Lütit. – Formasyon içindeki lütit tabakaları genellikle koyu gri renkli olup bir veya birkaç santimetre kalınlıktadır. İçlerinde ince laminasyon görülebilir. Bazı heyelanlı arenit tabakalarının içine sivri uçlar (flame structures) halinde de uzanır.

Fosiller

Bölükdağ formasyonu sedimentleninde makrofosil olarak, tayin edilemiyen lamellibranş kavkıları (muhtemelen Ostrea) ile bazı sürüklenmiş rudistler ve bunların parçaları bulunmaktadır. N. Karacabey tarafından yapılan tayinde

Lapeirousia jouanneti (DES. MOUL.) BAYLE

görülmüş ve Mestrihtiyen yaşı verilmiştir (M.T.A. Rap. No. 1969/249).

Mikrofosil olarak da, arenitler içersinde taşınmış halde bulunanlar B. Sözeri tarafından

Orbitoides media D'ARCH.

olarak tayin edilmiş, Mestrihtiyen yaş verilmiştir (M.T.A. Rap. No. BS/68/35).

Yaş ve korelasyon

Yaş. – Formasyon içinde bulunan Mestrihtiyen yaşlı fosillerin taşınmış durumda olmaları, ilk nazarda bunların römanye oldukları, dolayısıyla formasyonun Mestrihtiyen'den genç, muhtemelen Paleosen yaşta olduğu düşüncesini uyandırmaktadır. Ancak aşağıdaki görüşlerden hareketle, bu fosillerin kayacın gerçek yaşını gösterdiği anlaşılmaktadır :

1 — Fosillerin Mestrihtiyen yaşlı eski bir formasyondan kopup gelmeleri halinde beraberindeki sediment elemanlarının da aşınma özelliklerine sahip olmaları gerekirdi. Gerçekte ise, en kolay aşınabilen yumuşak kalsik plajioklazların bile köşeli ve taze hallerini muhafaza ettiklerini görüyoruz ki, bu durum erozyondan ziyade, süratli bir taşınmaya (volkanizma) işaret etmektedir. (Folk, 1968, s. 84).

2 — Rudistlerin dış aşınma yüzeyi muntazam çakıl şeklinde olmayıp, düzensiz klast biçimindedir (Şekil 8). Bu durum ancak türbid akıntılarla sürüklenme sonucunda meydana gelecek bir aşınma tarzı olarak izah edilebilir; karadan veya kıyıdan kopmuş parçaların muntazam yüzeyli yuvarlak çakıllar oluşturması beklenir.

3 – Rudistlerin içini dolduran kum ile dışını çevreleyen kum aynı malzemedir (N. Karacabey, M.T.A. Rap. No. 1969/249). Daha eski bir kayaçtan erozyonla koparılmış bir rudistte böyle bir durum beklemek zordur. Başka bir izah tarzı da, içi başka bir malzeme ile dolmuş ve taşlaşmış olan rudistin, sonradan boşalması (nasıl ?) ve türbid akıntıyla taşınma sırasında yeniden dolmasıdır. Ancak, bu karışık ve ispatı kolay olmayan izah şekli yerine, rudistin henüz fosilleşmemişken yerinden alınıp türbid akıntılar tarafından taşınması ve bu sırada kum malzeme ile dolması, daha uygun görünmektedir.

4 — Mestrihtiyen yaşlı makro ve mikrofauna yanısıra hiçbir Paleosen yaşlı fosile rastlanmamıştır.

Bu sebeplerden Bölükdağ formasyonunun Mestrihtiyen yaşlı olduğu kabul edilmiştir.

Şekil 8 — Bir türbidit içinden alınan taşınmış rudist kolonisi. Fosillerin ayrılmamış, dış duvarlarının aşınmamış, içlerini dolduran ve dışlarını saran malzemenin aynı olduğuna dikkat ediniz.

Korelasyon. – Gerek yaş, gerekse litoloji yönünden (Tüf malzemeli, türbidit kökenli arenitler) Bölükdağ formasyonunu, Haymana bölgesindeki Kavak formasyonu (Yüksel, 1970), kısmen de alttaki Haymana formasyonunun üst kısmı ile korele etmek mümkündür (Çizelge I). Tuzgölü doğusunda Şerefli Koçhisar civarındaki Asmaboğazı formasyonu (Rigo ve Cortesini, 19/60) da, yaş ve litoloji itibariyle Bölükdağ formasyonu ile korele edilebilir.

210

Topoğrafya görünüşü

Formasyon genellikle iyi çimentolaşmış tabakaların varlığı dolayısıyla aşınmaya dayanıklı bir yapı göstermekte, bu sebeple sahada bir dizi tepeler ve yükseklikler meydana getirmektedir.

Yorum

Formasyonun büyük coğunluğunu teşkil eden arenitler, sediment yapıları ve dereceli tabakalaşmaları ile, türbid akıntılarla gelmiş kayaçları temsil etmektedir. Daha önce ileri sürülenlerin aksine (Brinkmann, 1968) dalgaların ve gelgit akıntılarının tesir sahasının cok altında en son cökelmis olan bu malzemenin, ancak türbid akıntılarla son mahallerine taşınmadan önceki safhalarda daha sığ bölgelerde, özellikle rudistli resiflerin gelişmekte olduğu verlerde birikmis bulunduğu ortaya çıkmaktadır. Malzemenin hemen hepsi volkanik kökenli olup süratli bir erozyon ve bazı hallerde de su altı volkanik erüpsiyon (kalsik plajioklaz, biotit, piroksen) sonucunda ilk toplanma verine yığılmıştır (Fiske ve Matsuda, 1964). Bu sırada normal olarak lütitlerin çökelmekte olduğu ortama, sık sık tekrarlanan tektonik hareket ve sarsıntıların sonucunda, arenit malzeme önce su altı heyelanları sonra da viskoz akıntı (türbid akıntı) haline geçerek yerleşmiş, bu arada nispeten sığ ortamda yaşayan canlıların fosillerini de buralara sürüklemiştir (Natland ve Kuenen, 1951; Kuenen, 1967).

Dereceli tabakalanma gösteren arenitlerin tabanlarında muhtelif akıntı izleri bulunmasına mukabil, tabaka içlerinde başka sediment yapılarının çok az görülmesi, bunların genellikle nisbeten karaya yakın, çok uzağa taşınmamış, proksimal (Walker, 1966, 1970) türbiditler olduğunu göstermektedir.

Petrografik yapıda ise arenitlerin içinde görülen mikrokristalen kuvars agrega parçaları da ilgi çekicidir. Kırıkkale masifi granitlerinin felsit apozifleri ve plütonun çabuk soğuyan dış kısımlarında da buna benzer mikrokristalen kuvars agregası (resorbsiyon gösteren kuvarsı çevreleyen felsit) bulunmaktadır.

Bunların mevcudiyeti bu sırada veya «az önce» vukubulmuş asitintermedier bir volkanik faaliyetin temsilcisi olabilir. Bu volkanik faaliyet, daha derindeki plütonun yerleşmesi ile ilgili ise, plütonun Mestrihtiyen'de oluşmağa başladığı sonucuna varılabilir.

Teoman Norman

Dizilitaşlar formasyonu

Dizilitaşlar formasyonu oldukça heterojen bir litolojiye sahiptir. Açık yeşil renkli lütitlerin esasını teşkil ettiği formasyon içinde rudit (monojenik ve polijenik çakıllı), volkanik arenit (türbid akıntı kökenli) ve kalkarenit çeşitli seviyelerde tezahür etmektedir. Hernekadar bu formasyon sahanın en güneyinden en kuzeyine kadar uzanmakta ise de, formasyonun bütün üyeleri, Hacıbalı köyünün 1 km batısındaki Dizilitaşlar mevkiinde (38/19) görülebilmektedir. Güneyde Yahşıhan batısındaki Hayhay sırtında (36/11), Hodar batısında (30/02), kuzeyde Topaloğlu sırtında (42/24) formasyonu incelemek mümkündür.

Tip lokalite ve kesitler

Dizilitaşlar mevkii. — Yaklaşık olarak burada 700 m kalınlığa sahip olan Dizilitaşlar formasyonu. K-G eksen doğrultulu, doğuya devrik asimetrik bir antiklinal meydana getirmektedir (Şekil 5, E-F kesiti). Ankara-Kırıkkale yolundan doğuya ayrılan Hacıbalı köyü yolu bu antiklinali enine kesmekte, bu suretle Dizilitaşlar formasyonunun muhtelif unsurlarının kolaylıkla incelenmesini mümkün kılmaktadır.

Antiklinalin batı kanadında, eksene yakın yerden başlamak üzere batıya doğru bir kesit yapılmıştır (Şekil 9 a). Burada, alttan üste doğru olmak üzere 5 üye saptanmıştır.

- 1 D1 üyesi : En altta bulunan açık yeşil ve yeknesak görünüşlü lütit ile, bunların arasında seyrek olarak bulunan 1 -2 sm kalınlığında ince dokulu arenitlerden ibarettir. Arenitlerde bariz sediment yapılar olmamakla birlikte, bazı tabakalarda hem alt hem de üst yüzeylerde solucan izlerine tesadüf edilmiştir. D1 üyesinin alt sınırı belli değildir. Sahada görülebilen en az kalınlık 50 m civarındadır.
- 2- D2 üyesi : Yer yer arenit tabakaları ile başlıyan D2 üyesi esas itibarıyla bir rudit dizisidir. Herbiri 1 - 2 m kalınlığında olan ve bazen arenit tabakaları ile arakatgılı bulunan rudit tabakaları, civardaki sarı renkli tepeleri meydana getirir. Birkaç santimetreden birkaç desimetreye kadar çapları değişen iyi yuvarlanmış magmatik kayaç (andezit, trakiandezit, riyodasit) bolder ve çakıllardan oluşmuş, tüflü arenit matriksli rudit tabakaları, bazan kaba dereceli tabakalanma da

Şekil 9 — Hacıbalı antiklinalinin doğu ve batı kanatlarında Dizilitaşlar formasyonunun stratigrafi kesitleri (Ölçeksizdir).

gösterir. Burada D2 üyesinin kalınlığı 150 m olarak saptanmıştır; ancak bu kalınlık çok değişken olup, antiklinalin doğu kanadında 100 m kadar gözükmektedir. Üyenin üst kısmını 60 m kalınlığında açık yeşil renkli lütit teşkil eder. Arakatgılı olarak görülen çok ince arenit tabakaları üste doğru biraz kalınlaşmaya başlar.

3 – D3 üyesi : Dizilitaşlar formasyonunun en bariz, fakat en karmaşık üyesidir. Yeşilimsi beyaz monojenik rudit (kal-ker klastları), polijenik rudit, koyu kahverenkli tüflü gevşek arenit ile açık kahverenkli iyi çimentolu tüflü sert arenit (dereceli tabakalı), sarımsı beyaz kalkarenit, lütit (açık yeşil renkli ve koyu gri renkli çeşitleri) bariz bir sıralanma düzeni göstermeksizin, arakatgılı olarak, bu üyeyi oluşturur. Kalınlık bu kesitte 120 m olmasına rağmen gerçekte çok değişkendir. Doğu kanatta bu üyenin kalınlığı 500 metreyi bulduğu gibi, sahanın başka yerlerinde 1000 metreye de ulaşabilir. Formasyon içinde birçok yerlerde görülebilen

tabaka içi kıvrımlar sualtı heyelanlarının sonucunda meydana gelmiş olup, bu kalınlık değişmelerine kısmen sebep olmaktadır.

D3 üyesinin diğer üyelerden ayıran en bariz kriter, içinde monojenik kalker klastlı rudit tabakalarının bulunmasıdır. Batı kanatta 2-10 sm çapında olan bu klastlar doğu kanattaki seviyelerde birkaç desimetre hattâ birkaç metre çapında olistolit bloklar (Şekil 10) olabilmektedir.

Şekil 10 — Kızılırmak köprüsü üzerinden doğuya bakış. D3 olistostromlarının teşkil ettiği sırt, K-G eksenli Hacıbalı antiklinalinin doğu kanadındadır. (Fotoğraftan çizilmiştir).

- 4 D4 üyesi : Karmaşık D3 üyesinin üzerine gelen bu üye, daha yeknesak bir litolojiye sahip olup, 10- 20 sm kalınlığındaki sert, açık kahverengi arenit tabakaları ve bunlarla arakat-gılı koyu gri-yeşil lütitlerin münavesinden ibarettir. Are-nitlerden bazıları dereceli tabakalanma ve taban yapıları, birçoğu ise sadece muhtelif iç sediment yapıları göster-mektedir. Kalınlık 170 m civarındadır; doğu kanatta fayla kesilmiştir.
- 5 D5 üyesi : Esas itibarıyla koyu gri-yeşil lütit ile seyrek arakatgılı ince (1-2 sm) arenitlerden müteşekkildir. Yer yer kalınca (30 - 50 sm) kalker çimentolu arenit tabakaları görülür. Kalınlık 150 m tahmin edilmiştir. D4 ve D5 üyeleri kesitin biraz güneyinde, Bölük Dağ doğusunda iyi incelenebilir.

Hayhay sırtı. – Burada mevcut asimetrik antiklinalde D2 üyesinin çok kalınlaştığını ve hattâ yeşil lütitle birbirinden ayrılan iki ayrı seviye teşkil ettiği görülmektedir. Doğu kanattaki D3 üyesi Kızılırmak'ın

sağ yakasında görülür. Beyaz kalker bir blok (olistolit), yumuşak lütitler ve arenitler arasında yükselerek küçük bir tepecik meydana getirir. Daha batıda bulunan ikinci bir antiklinalin bati kanadında D2 üyesinin üst kısmını teşkil eden yeşil lütitlerin 400 metreye kadar, üstteki D3 üyesinin ise 750 metreye kadar kalınlaştığı görülmektedir. Hodar batısı. – Bu bölgede D2 üvesi 500 metre kalınlığında olup. yaklaşık olarak 150 şer metre kalınlığında andezit klastlı iki rudit seviyesi ile aradaki 200 metrelik bir yeşil lütit seviyesinden müteşekkildir. Alttaki rudit seviyesi yanal olarak devamlı değildir. D3 üvesi doğrudan doğruya üstteki andezit klastlı rudit seviyesi üzerine oturur: vaklasık olarak 250 m kalınlıktadır. Daha üstte bulunan D4 ve D5 üveleri kovu gri-vesil renkli lütitler ve bunlarla arakatgılı arenit tabakalarından oluşmuştur. Arenit tabakalarının kalınlığı (20 sm) ve adedi üste doğru tedrici olarak azalır. Bu sebepten D4 ve D5 üvelerini burada bir sınırla avırmak zordur. Gerek mahalli kıvrımlar, gerekse batıdan fayla gelen Bölükdağ formasyonunun üst sınırı örtmesi, D4 ve D5 üyelerinin toplam kalınlıkları hakkında bir fikir edinmeyi çok güçleştirir ise de, bu bölgede kalınlıkların oldukça artmış olduğu mostraların dağılışından anlaşılmaktadır (Levha I).

Topaloğlu sırtı. — Burada Dizilitaşlar formasyonunun ancak D2, D3 ve kısmen D4 üyeleri görülür. D2 üyesi yine kızılımtrak-sarı rengini muhafaza etmekle beraber, çakıllar çok küçülmüş hattâ yer yer kaybolmuş, buna mukabil tüflü arenit hakim duruma geçmiş bir haldedir. D3 üyesinde ise kalker klastları çok iri, birkaç metre çapında olarak: bulunmaktadır.

Alt ve üst sınırlar

Dizilitaş formasyonunun alt sınırı saha dahilinde hiçbir yerde; görülememiştir. Ancak, gerek sedimentasyonun Bölükdağ formasyonuna benzerlikler göstermesi (türbid akıntılarla oluşmuş tüflü arenitlerin mevcudiyeti), gerekse tabaka eğimlerinin alttaki diğer formasyonlara tamamen uyması dolayısıyla, alt sınırın konkordan olması kuvvetle muhtemeldir.

Formasyonun üst sınırı da sahanın hemen her yerinde faylıdır. Ancak, Keçili'nin 3 km batısında yer alan asimetrik bir senklinalde (42/26) formasyonun çok ince bir D5 üyesinin üstüne Hacıbalı formasyonu tipi arenitlerin konkordan olarak geldiği görülmektedir.

Teoman Norman

Yanal sınırlar

Dizilitaşlar formasyonu güneybatıdan kuzeydoğuya doğru bütün saha boyunca uzanmakla beraber, içindeki üyelerde yanal olarak önemli değişmeler görülmektedir. D2 üyesi güneybatıda kalın ve hattâ iki seviyeli iken, kuzeydoğuya doğru gittikçe incelmekte, Topaloğlu sırtı civarında tüflü arenit haline dönüşmekte ve daha ilerde görülmemektedir. D3 üyesi ise en iri kalker bloklu gelişmesini Keçili batısındaki sırtlarda göstermekte, daha kuzeye, batıya ve güneye gidildikçe daha küçük kalker klastlı ruditlere dönüşmekte ve incelmektedir. D4 ve D5 üyeleri güneybatıda daha kalın bir gelişme göstermekte, kuzeydoğuya doğru kalınlıkları azalmaktadır. Sahadaki gözlemlerden, Dizilitaşlar formasyonu üyelerinin kendi aralarında girift (interfingering) yanal sınırlara sahip oldukları sonucuna varılmaktadır.

Kalınlık

Formasyonun alt ve üst sınırları kesinlikle saptanamadığı için, kalınlık hakkında kesin bir rakkam vermek imkânsızdır. Ancak, sahanın ortalarında 700 m kadar olan toplam kalınlığın kuzeydoğuya doğru muhtemelen biraz azaldığı, buna mukabil güneybatı yönünde de arttığı söylenebilir.

Litoloji

Rudit. – Dizilitaşlar formasyonunda üç çeşit rudit vardır: 1 – Andezit çakıllı rudit (D2 üyesinde), 2 – Kalker klastlı rudit (D3 üyesinde), 3 – Polijenik rudit (D3 ve nadiren D4 üyesinde).

1 – Andezit çakıllı rudit : Birkaç santimetreden birkaç desimetreye kadar değişen boyda çok iyi yuvarlanmış çakıl ve bolderler, tüf malzemeli bir arenit matriks içinde kalsitle çimentolaşmış bir halde bulunmaktadır. İri elemanların çoğunlukla andezit, riyodasit, trakiandezit, lösitli trakit, lösitli tefrit olduğu, az miktarda da spilit ve ultrabazik kayaç çakıllı bulunduğu görülmüştür. (A. Kraeff, 1969, M.T.A. Rap. No. 5820). Matriksi teşkil eden tüflü arenit malzeme ise volkanik kuvars parçacıkları, devitrifiye olmuş volkanik cam, klorit, limonit ve kalsitten ibarettir. Bir veya birkaç metre kalınlığında tabakalar halinde olan bu ruditler, 10-20 sm kalınlığında tüflü arenitlerle arakatgılı olabilir. Rudit tabakalarının iç bünyelerinde genellikle herhangibir belli sediment yapısı, örneğin tane yönlenmesi (grain orientation) bulunmazsa da, bazı tabakalarda gayet kaba bir dereceli boylanmaya (altta iri, üstte ufak çakıllar) rastlanılmıştır.

- 2 Kalker klastlı rudit : Muhtelif büyüklükte (birkac sm birkaç m), düzgün olmayan (girintili çıkıntılı) kalker parçacıkları, yeşilimsi renkli, lütit (veya bazen koyu kahverengi tüflü bir arenit) matriks içinde, bazan yığılmış, bazan «yüzer» vaziyette, bazan da dereceli boylanma gösterecek surette bulunur. Çok iri (8-10 m) olan bazı bloklar köşeli olup, dahili tabakalanmalarını halâ muhafaza etmiş kalkarenitlerdir. Orta boylu ve ufak klastlar ise düzgün olmayan (irregular) şekilleri ile, yarı-konsolide biomikrit kalker (algler) formasyonlardan kopmus gözükmektedir. Klastlar arasında bazan daha yüksek bir enerji ortamını temsil eden iyi yuvarlanmış ve içi kalşit dolmuş rudist parçaları, cimentolasmış mercan kolonisinden oluşmuş cakıllar, iyi yuvarlanmış ultrabazik kayaç ve andezit çakılları da vardır (sonuncular oldukça nadirdir). Sedimenter yapısı itibarıyla bu ünite, bir olistostromu temsil etmektedir (Abbate, Bortolotti ve Passerini, 1970).
- 3 Polijenik rudit : Özellikle arenit tabakaları ile arakatgılı tek bir tabaka halinde bulunan polijenik rudit, çok iyi yuvarlaklaşmış çört (radyolarit), bazalt, ofiolit ve nadiren kuvars çakılları ile, bunları tutan tüf malzemeli bir arenitten oluşmuştur. Bazan yuvarlanmış ve aşınmış rudist, gatropod ve ostrea parçaları da görülmektedir. Bu rudit tabakalarında nadiren dereceli boylanma görülür; ancak tabaka içi yapılara rastlanmaz. Çakılların küreselliği fazladır.
- Arenit.— Dizilitaşlar formasyonunda başlıca dört tip arenit görülmektedir :
 - Koyu kahverenkli gevşek arenit : Genellikle 100 150 sm kalınlığında gevşek çimentolu tabakalar halinde olup, da-

Teoman Norman

hili sedimenter yapılar veya taban yapıları göstermezler. İnce kesitte, akma yapısı gösteren köşeli trakiandesit parçacıkları (% 10), köşeli mikrokristalen kuvars agregası parçacıkları (% 15), köşeli volkanik kuvars (% 10), köşeli plajioklaz (labradorit, % 5), ortoklaz parçaları (% 10), radyolarit parçacıkları (% 20), altere olmuş bazik volkan camı (% 15), klorit ve kalsitten ibaret bir matriks içinde bulunur. Zaman zaman iri klastlar halinde biomikrit veya muhtemelen resifal kalker parçacıklarına da rastlanır. Bu tip arenitler daha ziyade D3 üyesinde görülür.

- 2 Açık kahverengi sert arenit : Kalsitle sıkı bir şekilde çimentolanmış bu tabakalar genellikle 10-30 sm kalınlığında olup, ince kesitte, köşeli mikrokristalen kuvars agragası (ortasında resorbe olmuş volkanik kuvars mevcut, % 50), köşeli kuvars (% 10), trakiandezit parçacıkları (% 5), zonlu sanidin ve ortoklaz (% 5), rudist parçaları ve mikrofosiller görümlekte, bunların hepsi kalsit ve kil minerallerinden ibaret bir matriks (% 25) içinde bulunmaktadır. Bu tip arenitlerin sedimenter yapıları muhteliftir: bazıları çok iyi derecelenme ile çeşitli taban yapıları göstermekte, bazıları ise bunlar yerine konvolut laminasyon, dalgalı laminasyon, düz laminasyon ve «ripple - drift» gibi iç yapılara sahip olmaktadır. Bu cins arenitler daha ziyade D4 üyesinde bulunurlar.
- 3 Çok ince dokulu arenit : Esas itibariyle açık kahverengi sert arenitlerle aynı mineralojik kompozisyonda olmakla beraber, sedimenter yapı olarak düz laminalı veya tamamen laminasız bir yapı gösterirler. Genellikle 1 - 2 sm kalınlığında olan bu tabakalar nispeten seyrek olarak yeşil lütitler içinde bulunurlar. Alt ve üst yüzeyleri biojenik izlerle kaplıdır. Bu sebepten, tektonik bakımdan fazla kıvrılmış tabakalarda alt-üst tayini yapmada yanıltıcı olabilirler. Bu arenit tipine en çok D1 ve D5 üyelerinde rastlanır.
- 4 Kalk,arenit : Köşeli mikrit kalker parçacıkları ve mikrofosiller, birkaç mikrokristalen kuvars agregası ile birlikte sparit (bazan mikrit - sparit) bir matrikste yerleşmiştir. Bazı ta-

bakalarda hafif bir dereceli tabakalanma görülürse de, genellikle bu tabakalarda dereceli tabakalanma, taban akıntı yapıları ve «ripple - drift» gibi sediment yapılar görmek zordur. Tabaka üstüne doğru, düz laminasyon bulunabilir. Bu tabakaların, resifler önünde gelişen kalker kırıntılarının türbid akıntılarla biostromlar halinde taşınıp basene yerleşmeşinden oluştuğu düşünülmektedir. Kalk arenit en çok D, nadiren D4 üyelerinde bulunur.

- Lütit. Dizilitaşlar formasyonunda başlıca iki lütit cinsi tefrik edilebilir :
 - Açık yeşil renkli lütit : Genellikle formasyonun alt kısımlarında hakim durumdadır. Bununla beraber D3 üyesinin orta ve üst kısımlarında da yer yer rastlanabilir. Kloritli malzemenin yüksek oranda olması muhtemeldir.
 - 2 Koyu gri-yeşil renkli lütit : D3 üyesinin en üst kısımları ile D4 ve D5 üyelerindeki lütit bu cinsten olup, büyük bir ihtimalle organik karbonlu malzemenin yüksek oranda olmasından dolayı bu rengi almaktadır.

Fosiller

Dizilitaşlar formasyonunda en bol fosiller D3 üyesinin kalkarenitlerinde ve kalker klastlı ruditlerinde, daha az miktarda da D2 ve D4 üyelerinin arenitlerinde bulunmuştur.

Kalkarenitlerde, matriks teşkil eden mikrit içinde E. Sirel ve B. Sözeri şu faunayı saptamıştır (Lokasyonlar: 36/10, 43/25, 34/13, 36/12, 38/19):

Laffitteina sp. Globorotalia sp. Miscellania sp. Marssonalia sp. Globigerina sp. Rotalia sp. Planorbulina Nodosaria sp. Textularia sp. Rotaliidae Miliolidae Lithotham Bryozoa

Bu fauna grubu genellikle Paleosen yaşını vermektedir. (M.T.A. Rap. No. E.S. 970/13 ve B.S. 72/1). Kalker klastlı ve kalsitli yeşil lütit matriksli ruditlerin klastlarından alınan numuneler de Paleosen yaştadır. E. Sirel ve B. Sözeri (op. cit.) bu klastların ince kesitlerinde aşağıdaki faunayı saptamıştır (Lokasyonlar 32/06, 39/17, 33/12, 38/18, 43/25) :

Lafitteina sp.

Globorotalia sp.

Miscellanea miscella, D'ARC.

Alveolina sp.

Keramosparea sp.

Planorbulina sp.

Rotalia sp.

Textularia sp.

Peneroplidae

Miliolidae

Rotaliidae

Parachetetes sp. (alg)

Bununla beraber bu klastlar arasında, kopmuş ve yuvarlanmış parçalar halinde Mestrihtiyen yaşlı (?) bazı mercanlar da görülmüştür. E. Öngüç'ün tayini ile (M.T.A. Rap. No. E.Ö. 1970/2), Yahşıhan GB'da D3 kalker klastlarından alınan bir nümunenin

Phyllocoenia coroliaris REUSS

türüne ait olduğu anlaşılmıştır. Sahada ayrıca birçok yuvarlanarak aşınmış Hippurites ve Siderolites fosilleri de görülmüştür. Bunların içini dolduran açık krem renkli çimento ve matriks malzemesi, içinde bulundukları, kalsitli yeşil lütit matriksden farklıdır. D2 üyesi arenitlerinin, iri elemanlı yuvarlak çakıllı rudltlerle arakatgılı oldukları yukarıda belirtilmişti. Hayhay sırtı batısındaki bir noktada (35/11) arenitlerin içinde bazı andezit (trakiandezit) çakılları ile birlikte, çakıl halinde

Pironaea polystyla slavonica (HİLBER) KÜHN bulunmuş ve N. Karacabey tarafından Mestrihtiyen yaşı verilmiştir. (M.T.A. Rap. No. N.K. 1970/272).

D4 üyesi arenitleri (Açık kahverenkli, sert, iyi çimentolanmış arenitler) genellikle karmaşık bir fauna ihtiva etmektedir. Bunlardan Mestrihtiyen yaşını temsil edenler genellikle kırılmış, fazlaca aşınmış olmakta veya doğrudan doğruya küçük bir çakıl içinde bulunmakta, Paleosen yaşını temsil edenler ise matriksle birlikte bulunmaktadır. E. Sirel ve B. Sözeri aşağıdaki tayinleri yapmıştır (Lokasyonlar : 36/10,, 35/11, 37/19):

Yerli olanlar :

Lafitteina sp. Globorotalia sp. . Rotaliidae Miliolidae Textularia sp. Lithothamnium

Taşınmış olanlar :

Siderolites sp. (Kırıklı) Orbitoides sp. (Kırıklı, çakıl içinde) Omphalocyclus sp. (Çakıl içinde) Valvulinidae

D3 ve D4 üyelerinde, diğer tabakalarla arakatgılı olarak görülen birkaç polijenik rudit (iyi yuvarlanmış çakıllı konglomeralar) tabakasının çakılları içinde, taşınmış ve yuvarlanmış olarak Üst Kretase yaşlı miktofauna tesbit edilmiştir (37/16, 40/25). N. Karacabey bunların içinde (M.T.A. Rap. No. 1969/269 1970/272) :

Hippuritella cornucopiae DEFRANCE

Radiolitidae

Sabinia sp.

Ayrıca foraminifer :

Siderolites cf. calcitropoides LAMARCK

saptayarak Mestrihtiyen yaşını vermiştir.

D1 ve D5 üyelerinin arenit laminalarında, genellikle fliş-tipi formasyonlarda rastlanan çeşitli solucan izlerine rastlanmıştır (Pettijohn, Potter ve Siever, 1972, s. 129).

Yaş ve korelasyon

Dizilitaşlar formasyonunun «yerli» fosilleri (Kalkarenit, kalker klastlı rudit ve sert arenitlerin matriksinde bulunanlar) Paleosen yaşını vermektedir. Ancak formasyonun muhtelif litolojik ünitelerinde, taşınmış Mestrihtiyen fosillerinin de mevcudiyeti görülmektedir.

Formasyon, litoloji ve yaş itibarıyla, Haymana bölgesindeki Çaldağ ve Kadıköy formasyonları (Yüksel, 1970) ve Çankırı bölgesindeki «Paleosen kum ve çakılları» (Reckamp ve Özbey, 1960) ile korele edilebilir (Çizelge I).

Topoğrafya görünüşü

Dizilitaşlar formasyonun muhtelif üyeleri değişik topoğrafya görünüşlerine sahiptir. D1 ve D5 üyelerinde lütit hakim olduğundan kolayca aşınmakta ve çukur yerleri, vadileri, teşkil etmektedir. D2 ve D3 üyelerinin rudit tabakaları yüksek tepeler dizisi meydana getirmekte, Dizilitaşlar mevkii, dolayısıyla formasyon, ismini bundan almaktadır. D4 üyesinin belirli bir topoğrafya görünüşü yoktur, vadileri ve tepeleri aynı derecede oluşturur.

Yorum

Dizilitaşlar formasyonunun, esas itibarıyla açık yeşil renkli lütitlerin çökelmekte olduğu nispette derin ve sakin bir ortamda oluşmağa başladığı anlaşılmaktadır (D1 üyesi). Volkanik çakıllı ruditlerin gelmesi türbid akıntılar yoluyla olmalıdır. Karadaki sellerle neritik bölgelere yığılmış bulunan çakıllar, tektonik tremörler sonucunda tekrar harekete geçerek daha derinlere inmiştir. Başka bir ihtimal de, karadan gelen sellerin sualtı kanyonlarını takip ederek doğrudan doğruya basen ortasına ulaşmasıdır. Bu olaylar, müteakip tektonik hareketliliğin ilk öncüleri olmuş, türbid akıntılar (biostromal kalkarenitler, açık kahverenkli sert arenitler, koyu kahverenkli gevşek arenitler) ve sualtı heyelanları (kalker klastlı rudit olistostromlar) basen içine ardı ardına dolmağa başlamıştır. Formasyon içi konglomeralar (intraformational conglomerates) halinde olan olistostromların yanısıra, zaman zaman yarı plastik durumdaki tabakaların kaymaları da görülmüştür. (Rigo ve Cortesini, 1964).

D2 üyesindeki ruditlerin çakılları iyi yuvarlanmış, küreselliği yüksek, muhtemelen akarsu orijinlidir. (Dobkins ve Folk, 1970). En iri çakıl büyüklüğünün kuzeye veya kuzeybatıya doğru azaldığı görülmektedir. Bu durum, akıntıların güney veya güneydoğudan geldiğini göstermekle, diğer paleo-yamaç verilerine uymakta, ancak türbid akıntıların KD'dan GB'ya akış yönüne uymamaktadır. Bu husus da, D2 üyesi ruditlerinin karasal orijinli olmalarını destekler mahiyettedir.

Bütün bu gözlemler, Mestrihtiyen'den sonra asit-intermedyer volkanik karanın yükselmekte olduğunu, dengesiz duruma gelen kıyısal ve neritik sedimentlerin sualtı kaymaları ve türbid akıntılarla tekrar sedimentasyona uğradığını (resedimentation) göstermektedir. Ancak «taşınmış» olan eski fosillerin Mestrihtiyen (en fazla Senoniyen) den daha yaşlı olmayışları, Paleosen esasında bu bölgedeki yükselme miktarının pek fazla olmadığını, bu sebepten daha eski tabakaların aşınmaya henüz uğramadığına işaret edebilir.

Tektonik tremörler, D3 üyesi oluşurken en yüksek safhasını bulmuştur. D4 ve D5 üyeleri yavaş yavaş durgun bir ortama dönüşü temsil etmektedir. Karbonlu organik malzemenin üste doğru artması açık kahverenkli sert kumtaşlarında dereceli tabakalanma ve taban yapıları yerine konvolut laminasyon, dalgalı laminasyon, paralel düz laminasyon ve «ripple-drift» gibi distal türbiditlere atfedilen (Walker, 1967, 1970) sediment yapılarının görülmesi, bu tektonik durgunluğa geçişi desteklemektedir.

Hacıbalı formasyonu

Hacıbalı formasyonu, Dizilitaşlar mevkii ile Hacıbalı köyü

arasında (38/18), köy yolu boyunca görünür. Genellikle koyu yeşilimsi kahverengi arenitlerin hakim olduğu bu formasyonda, 50 sm kalınlığında, kalsit çimentolu arenit ile daha kalın polijenik rudit tabakaları da vardır. Kuzey ve kuzeydoğuya uzanan formansyonun mostrası, genellikle Dizilitaşlar formasyonuna paralel olarak tezahür etmektedir (Levha II). Keçili batısında (42/26) bir senklinali meydana getirir. Hodar güneyinde ise (30/00) iki büyük fay zonu arasında görülen Hacıbalı formasyonu, çok ezilmiş ve parçalanmış bir vaziyette bulunur.

Tip yeri ve kesiti

Hacıbalı batısı. — Dizilitaşlar formasyonunun en üst kısmını kesen bindirme fayı, aynı zamanda Hacıbalı formasyonunun taban kısmının örtülmesine sebep olur (Şekil 5, E-F kesiti). Yüksek eğimle doğuya dalan, bazan da devrik durum gösteren tabakalar, görülebilen en alt kısımdan doğudaki en üst kısıma kadar, koyu yeşilimsi kahverenkli, bitki kalıntılı volkanik arenitler ve ara tabakalı, ince, koyu gri renkli lütitlerdir. (Şekil 11). Arenitlerin kalınlıkları genellikle birkaç desimetredir; pek fazla çimentolanmamıştır; sık sık küresel ayrışma, gösterirler. Dereceli tabakalanma ve diğer akıntı taban yapıları her zaman bariz değildir. Ancak köyün batısında tabaka içi kaymaları görülür,

Bütün formasyonun esasını teşkil eden yukarıdaki arenit ve lütitlerle yer yer aratabakalı olarak görülen ve münferit olarak tezahür eden 30-40 sm kalınlığında açık renkli kalsit çimentolu sert arenitlerde ise, dereceli tabakalanma ve taban yapıları umumiyetle belirgindir. Bu tabakalar sahada küçük (40-60 m dalga boyu) asimetrik kıvrımlar meydana getirirler. Duruşları ve eksen gidişleri civarın tektoniğine uymayan bu kıvrımlar, tabaka içi kaymalarla ilgili olan deformasyonlar olarak nitelendirilmiştir.

Doğuya doğru stratigrafık bakımdan gençleşen formasyon içinde, münferit olarak polijenik rudit tabakalarına da rastlanır; üste doğru bunların sıklaştığı göze çarpar.

Keçili batısı. – Asimetrik ve doğuya devrik olan senkiinalin ortasında Keçili konglomeraları, bunların altında konkordan olarak

Yahşıhan Bölgesi Stratigrafisi

Keçili formasyonu

Koyu yeşilimsi kahverengi tüflü gevşek arenitler, arakatgılı kalsit çimentolu arenitler ve polijenik ruditler

Şekil 11 — Hacıbalı köyü batısında Hacıbalı formasyonu stratigrafi kesiti (Ölçeksizdir).

Hacıbalı formasyonu bulunur. Hacıbalı kesitindeki bütün sedimenter özelliklere burada da rastlanır.

Alt ve üst sınırlar

Hacıbalı formasyonunun alt sınırı Keçili batısındaki büyük senklinalde görülür (42/26). Burada, koyu yeşilimsi-kahverenkli gevşek arenit tabakalarının, Dizilitaşlar formasyonunun ince bir lütitten ibaret olan D5 üyesi üzerine konkordan olarak geldiği görülür. Üst sınır ise, yine yukarıda belirtilen senklinalde görülebildiği gibi, Hacıbalı köyü doğusunda ve Hodar köyü güneyinde de incelenebilir. Buralarda, polijenik çakıllı ruditlerin hakim olduğu Keçili formasyonunun, konkordan olarak Hacıbalı formasyonu üzerine geldiği görülür.

Yanal sınırlar

K-G doğrultusunda formasyonun yanal sınırları saha dışına çıkmaktadır. Ancak doğuya doğru gidildikçe formasyonun bünyesinin milleştiği, litostratigrafık bakımdan başka bir formasyon (Bulanıkdere formasyonu) haline geldiği müşahade edilmektedir. Hacıbalı köyünden geçen ve ekseni K-G doğrultusunda uzanan bir senklinalin ortasını Keçili formasyonu teşkil etmektedir.
Teoman Norman

Senklinalin batı kanadını Hacıbalı formasyonu, doğu kanadını ise Bulanıkdere formasyonu oluşturmaktadır (Şekil 12). Bu bakımdan, takriben senklinalin ortalarına rastlayan bir yerde Hacıbalı formasyonunun yanal olarak Bulanıkdere formasyonuna geçtiği anlaşılmaktadır.

Kalınlık

Sedimentasyon esnasında ve daha sonraki tektonik hareketler sırasında birçok plastik deformasyona uğramış olan Hacıbalı formasyonunun kalınlığını tayin etmek çok güçtür. Ancak Hacıbalı civarında 300-400 m olan kalınlığın Keçili batısındaki senklinalde 700-800 metreyi bulduğu görülmektedir. Batıya ve güneybatıya doğru kalınlığın ne şekilde değiştiği bilinmemektedir. Doğuya doğru ise formasyon, yanal olarak Bulanıkdere formasyonuna geçtiğinden dolayı, incelmektedir (Şekil 12).

Litoloji

Hacıbalı formasyonunda hakim olan litoloji, koyu yeşilimsi-kahverenkli gevşek arenitler ve bunlarla aratabakalı olan koyu gri renkli lütitlerdir. Açık renkli sarımsı sert arenitler ile polijenik ruditler tâli önemi haizdir.

Koyu yeşilimsi-kahverenkli arenitler. — Kalınlıkları birkaç desimetreden birkaç metreye kadar değişebilen bu tabakalar genellikle gevşek çimentolu olup küresel ayrışma gösterirler. İnce kesitte bol miktarda, köşeli, akma yapısı gösteren volkanik parçalar (% 5), köşeli albit plajioklaz (% 5), mikrokristalen agrega yapılı köşeli kuvars (% 10), sivri parçacıklar halinde volkanik kuvars (% 5), mikrofosiller ve makrofosil kavkıları da bulunur. Bütün bu malzeme klorit, serisit ve kısmen kalsitli, bol (% 25) bir matriks içinde yer almaktadır. Kaba kum dokusunda olan ve kötü boylanma gösteren bu arenitlerde dereceli tabakalanma her zaman belirgin değildir. Derecelenme bazan, tabakanın üstüne doğru, karbonize olmuş bitki kalıntılarının artması, bazan da ihtiva ettiği çakılların üste doğru küçülmeleri şeklinde olur. Hacıbalı yakınlarında bu cins arenitler içinde, sedimentasyon sırasında oluşmuş tabaka kaymaları da görülmüştür.

226

Açık renkli sert arenitler. – Daha yumuşak ve koyu görünüşlü olan diğer arenitlerin içinde bariz birer tabaka (ortalama 50 sm kalın)

Şekil 12 — Hacıbalı ile Mahmutlar köyü senklinalinde formasyonların yanal geçişleri (Basitleştirilmiş diagramatik kesit; köylerin arası 2 km).

olarak farkedilen bu açık renkli arenitler, kalsitle iyi çimentolanmışlardır. İnce kesitte bol miktarda, köşeli, mikrokristalen agrea kuvars (% 50), sivri köşeli volkanik kuvars parçaları (% 15), köşeli, akma yapısı gösteren volkanik kayaç parçaları (% 10), kloritleşmiş biotit (% 5), köşeli albit-oligoklaz-plajioklaz kristalleri (% 5) ve mikrofosiller (% 1-2), klorit ve serisitten ibaret bir matrix içinde (% 15-20) bulunur.

Bu arenitlerde genellikle dereceli tabakalanma ve taban yapıları görülür. İç sedimenter yapılara (laminasyon) az raslanır. Her yerde bir takım küçük kıvrımlar yaparlar. Bu kıvrımların sedimentasyon sırasında, meyil aşağı kaymalar sonucunda oluştuğu kanısına varılmıştır.

Polijenik ruditler. – Hacıbalı formasyonunun hakim litolojisi olan koyu yeşilimsi-kahverenkli arenitler içerisinde, kalınlığı birkaç desimetreden birkaç metreye değişen münferit tabakalar halinde bulunan bu ruditler, çok iyi yuvarlanmış, küreselliği yüksek çakıllar ile bunların arasında matriks teşkil eden koyu renkli, az çimentolanmış gevşek arenitten müteşekkildir. Çakılların boyları 1-40 sm arasında değişmekle beraber, genellikle 5 sm civarındadır. Çakılları meydana getiren elemanlar: Trakit (lösitit), tefrit, spilit, radyolarit, andezinli tüfit, serpantin, beyaz kuvars, kuvarsit, Senomaniyen yaşlı fosilli kalker (az) ve çok ince dokulu mikrit kalker (daha çok). Kalker çakılları genellikle az olmakla birlikte, Dizilitaşlar mevkiine yakın bir yerde (38/19) tezahür eden bir ruditte o kadar boldur ki, diğer elemanlara tamamen hakim olur. Ancak, kalker çakıllarının çok iyi

yuvarlanmış olmaları, bu ruditin Dizilitaşlar formasyonundaki olistrostrom ruditleriyle karıştırılmalarını önler.

Koyu gri lütit. – Arenit tabakaları ile arakatgılı olarak, zaman zaman kalınlığı birkaç santimetreyi bulan ince laminalı lütitler, koyu gri, bazan koyu mavimsi griye yaklaşan renklerini muhtemelen içlerindeki organik karbonlu malzemenin çokluğuna borçludur.

Fosiller

Koyu yeşilimsi kahverenkli gevşek arenitler içinde taşınmış ve kısmen aşınmış, kısmen de rekristalize olmuş vaziyette rmkrofosilere raslanır. Ancak bu fauna tayine elverişli çıkmamıştır. Arenitler içinde bulunan karbonize olmuş bitki parçalarının da tayini yapılamamıştır.

Polijenik konglomera çakılları arasında bulunan fosilli bir kalker (42/25) çakılında B. Sözeri

Orbitolina sp.

Dicyclina sp.

tayin etmiş ve çakıla Senomaniyen yaşını vermiştir (M.T.A. Rap. F40. B.S. 69/19).

Yaş ve korelasyon

Paleosen yaşlı Dizilitaşlar formasyonunun üzerine gelen ve yanal olarak önce Bulanıkdere formasyonu ile, sonra da İpresiyen yaşlı Mahmutlar formasyonu ile korele edilen bu formasyonun yaşı, Alt Eosen olarak kabul edilmiştir.

Litolojik bakımdan Hacıbalı formasyonunu, Haymana bölgesindeki Gedik formasyonu (Yüksel, 1970) ile korele etmek mümkündür (Çizelge I). Şerefli Koçhisar bölgesinde ise Kırkkavak formasyonunun üst kısmı ile Eskipolatlı formasyonunun alt kısmı (Rigo ve Cortesini, 1960) muhtemelen Hacıbalı formasyonunun eşdeğeridir

Topoğrafya görünüşü

Hacıbalı formasyonundaki koyu yeşilimsi kahverenkli arenitler genellikle aşınmaya müsait olduklarından alçak araziyi meydana getirirler. Ancak yer yer görülen sert arenit ve polijenik rudit (konglomera) tabakaları aşınmaya daha dayanıklı olduklarından küçük tepecikleri oluştururlar.

228

Yorum

Hacıbalı formasyonunun cökelme ortamının gerçek sahibi koyu ari veva mavimsi ari renklerdeki lütitlerdir. Lütitlerin cökeldiği ortama, koyu yeşilimsi-kahverenkli arenitler türbit akıntılar halinde gelmis ve verlesmistir. Sualtı hevelanlarına ait kıvrımlar, ic sedimenter vapıların azlığı ve dereceli tabakalanmanın çoğu zaman belirsiz oluşu, bu türbiditlerin proksimal, yani kıyıya yakın yerde oluştuklarına işaret etmektedir. Nitekim bitki kalıntılarının fazlalığı da bunu desteklemektedir. Ayrıca, zaman zaman arakatgılı olarak görülen polijenik ruditlerin iyice yuvarlanmış çakıllarının, bu kıyılarda veya buralara gelen dereler boyunca yuvarlandıkları (Dobkins ve Folk, 1970) ve neritik bölgede ilk cökelmelerini müteakip, türbid sedimentasyonla basene yerleştikleri düşünülmektedir. Ruditlerin başka bir geliş tarzı, dik eğimli derelerde meydana gelen sellerin türbid akıntı halinde su altında akmalarına devam ederek. muhtemelen denizaltı erozyon kanalları yoluyla basene yerleşmeleri olabilir. Her iki halde de, yuvarlak çakılların orijinlerinin karasal dereler olması gereklidir.

Açık renkli arenitler ile, hakim durumdaki koyu renkli arenitler arasında, basene yerleşme bakımından, büyük bir fark yoktur. Ancak mineralojik yapıdaki fark (çimentolaşmadaki fark belki bunun bir sonucudur) bu iki türbidit cinsinin ayrı ayrı bölgelerden geldiklerine isaret edebilir. Acık renkli arenitlerde mikrokristalen agrega kuvars ve volkanik kuvars (Kırıkkale masifinin, unsurları) hakimdir; kovu renkli arenitlerde ise bazik elemanlar (Irmak formasvonunun unsurları) coğunluktadır. Elde yeteri kadar paleo-akıntı yönü ölcüleri olmamasına rağmen, mevcut ölçüler, bu iki arenit cinsini getiren akıntı yönleri arasında bariz bir fark olmadığını, akıntı yönünün genellikle KKD'dan GGB'ya doğru olduğunu göstermektedir. Uygun görünen bir çözüm yolu, koyu renkli arenitlerin batıdan, açık renkli arenitlerin ise doğudaki asit intermedier malzemeden ve Karaca Ali plütonunun üst kısımlarından gelerek, basen boyunca aynı yöne, yani GGB yönüne sapmasıdır. Başka bir çözüm yolu da, koyu renkli arenitlerin, Karaca Ali plütonun içine girdiği yerli kayaçlar (country rock) olan Yahşıhan formasyonundan gelmesidir. Açık renkli arenitler ise, plütonun yer yer erozyona maruz kalan kısımlarından, zaman zaman meydana gelebilecek kuvvetli sellerden oluşan türbid akıntılarla basenin derinliklerine taşınmış olabilir. Polijenik ruditlerin de aynı yolla gelebileceğini, Mahmutlar köyü kuzeyinde görülen bir erozyon kanalı (washout channel) belirtmektedir (Şekil 13). Polijenik ruditlerin çakıl kompozisyonu, hem Kırıkkale masifinin hem de Irmak formasyonunun (veya eşdeğeri olan Yahşıhan formasyonu alt kısmının) elemanlarını birlikte ihtiva etmekte, bu suretle yukarıda ileri sürülen ikinci görüşü desteklemektedir.

Üçüncü bir açıklama şekli olarak da, koyu renkli tüflü arenitlerin sualtı volkan patlamalarından oluşan türbid akıntılarla, açık renkli arenitlerin ise Kırıkkale masifi orijinli sedimentleri taşıyan şelf orijinli türbid akıntılarla geldiği, basen ekseni boyunca bütün türbid akıntıların aynı tarafa yöneldiği ileri sürülebilir. Ancak, koyu renkli arenitlerle ilgili olarak hiç lâv veya aglomera görülmediği gibi, Kırıkkale masifinden gelen katgının bu durumda «çok az» olması, bu açıklama şeklinin aleyhindedir.

Hacıbalı formasyonunun çökelmesi sırasında Kırıkkale masi-

Şekil 13 — Mahmutlar civarında Keçili-Bulanıkdere formasyonları arasında bir erozyon kanalı. Arenit parçaları çakılların arasına karışmıştır (Diagramatik skeç).

finin yükseldiği, erozyonun karada önce Yahşıhan formasyonunu, daha sonra gerilerdeki plüton malzemesini etkilediği, dereler, seller ve nihayet türbid akıntılarla taşman malzemenin hareketli bir basende yerleştiği, zaman zaman sualtı heyelanları halinde kaydığı anlaşılmaktadır. Polijenik ruditlerin ve bitki parçacıklarının üste doğru artmaları, karasal ortamın yakınlaştığına işaret edebilir.

230

Bu formasyonda hakim durumda olan polijenik, iyi yuvarlanmış küreselliği yüksek çakıllı rudit tabakaları ile, bunlarla arakatgılı olan koyu yeşilimsi-kahverenkli arenit, açık renkli arenit ve koyu yeşilimsi gri ile mavimsi gri renkli lütit tabakaları bulunur. Kalınlığı değişken olup, Keçili doğusunda yaklaşık olarak 750 m olarak hesaplanmıştır.

Tip yeri ve kesiti

Keçili formasyonu, en kalın gelişmesini Keçili köyünün kuzeyinde ve sahamız dışında gösterir. Keçili doğusunda Caferoğlu Sırtı (47/27) ve Araptepe'de (48/27), Keçili batısında ise asimetrik senklinalin orta kısımlarında (42/26), formasyonu tetkik etmek mümkündür. Daha güneyde, Hacıbalı ile Mahmutlar arasında Karagedik Tepe (39/19) de, ve Yahşıhan kuzeyinde Doğan Tepede (38/12), formasyonun alt kısımları tezahür eder. Sahanın güneybatı bölümünde Hodar'dan kuzey ve kuzeydoğuya doğru uzanan iki fay arasındaki bölgede de, devrik ve tektonize olmuş bir surette, Keçili formasyonu görülür (31/02).

Caferoğlu sırtı - Arap tepe. — Keçili doğusunda yer alan bu mevkide koyu yeşilimsi kahverenkli lütit ve bazı arenit tabakaları üzerine, Keçili formasyonunun polijenik çakıllı ruditleri gelir. Kalın (1 -2 m) tabakalar halinde olan ruditlerle arakatgılı olarak yer yer koyu yeşilimsi kahverenkli arenitler ve nadiren de açık sarımsı renkli kalkerli arenitler gelir. Bazı ünitelerde dereceli tabakalanma ve yük izleri (load casts); de görülür. Takriben 400 m lik bir kısımdan sonra, üste koyu yeşilimsi gri lütitler 150 m bir kalınlık ile yerleşir (Şekil 14). Bunların üzerine de, Arap tepeyi meydana getiren, 200 m kadar kalınlıkta polijenik ruditler ve arakatgılı arenitler gelir. Formasyonun en üst kısmı burada faylıdır.

Hodar civarı. – Hodar'ın hemen güneyinde, Keçili formasyonuna ait: polijenik rudit tabakalarının konkordan olarak, Hacıbalı formasyonu; tipi, koyu renkli, küresel ayrışmalı volkanik arenitler üzerine geldiği görülmektedir. Burada tabakalar 45-50 derecelik eğimlerle doğuya dalmakta ve zaman zaman yeşilimsi kahverenkli arenitlerle arakatgılı bulunmaktadır.

Hodar'ın hemen kuzeybatısında ise, doğuya doğru 60-70 de-

Teoman Norman

Şekil 14 — Caferoğlu sırtı - Araptepe arası Keçeli formasyonu stratigrafi kesitli (Ölçeksiz).

receli eğimli kahverenkli ruditlerin, üste doğru pembemsi bir renk aldığı görülmektedir.

Karagedik tepe ve Doğan tepe. – Buralarda görülen tabakalar Keçili formasyonunun alt kısımlarına aittir; stratigrafik özellikleri bahsedilen diğer lokalitelerdekine benzemektedir. Ancak, her iki yerde de formasyonun doğu tarafı Bulanıkdere formasyonu üzerine konkordan olarak oturmakta, sınırda yer yer erozyon kanalları görülmektedir (Mahmutlar KKB, Yahşıhan K, Hodar K).

Alt ve üst sınırlar

Keçili formasyonu, mahallî erozyon kanalları hariç tutulursa, konkordan olarak Hacıbalı formasyonu veya onun eşdeğeri olan Bulanıkdere formasyonu üzerine oturur. Üst sınır ise Bahşili formasyonuna geçişli olmakla beraber, hemen heryerde faylıdır.

Yanal sınırlar

Keçili formasyonunun doğu ve güneydoğu yönlerinde yanal olarak Bulanıkdere formasyonuna geçtiği görülmektedir. Özellikle Keçili doğusunda bu geçişler girift (interfingering) olarak bariz bir şekilde izlenebilir.

Kalınlık

Formasyonun kalınlığı tam olarak ölçülememekle beraber, asgari olarak Keçili doğusunda 750 m, Doğan tepede 500 m yaklaşık değerler tahmin edilmiştir. Sahanın kuzeyinde ve dışında yaptığımız gözlemler, bu kalınlığın kuzeye doğru gittikçe daha da arttığına işaret etmektedir. Kalecik civarında 2000 m'yi aştığı görülmüştür (Reckamp, 1959). Doğu ve güneydoğuya doğru ise kalınlık gittikçe azalır ve formasyon yanal olarak Bulanıkdere formasyonuna geçer.

Litoloji

Keçili formasyonunun en önemli unsuru polijenik çakıllı, 1-2 m kalınlıkta ruditlerdir. Tâli miktarda, aratabakalı, dereceli tabakalanma gösteren koyu yeşilimsi kahverenkli arenitler (50 - 100 sm) ve açık renkli kalsit çimentolu arenitler (20-40 sm) vardır. Sahanın kuzeyinde ve dışında görülen aratabakalı kalkerler, sahamız içinde bulunmaz. Genellikle ince arakatgılar halinde bulunan koyu yeşilimsi gri renkli lütitler, bilhassa doğu taraftaki mostralarda kalınlaşırlar. Bu litolojik ünitelerin özellikleri daha önce Hacıbalı formasyonunda açıklanmıştı. Burada ilâve edilmesi gereken husus, formasyonun alt ve orta kısımlarındaki polijenik rudit tabakaları cakılları arasında granit görülmemesine karşı, üst seviyeleri meydana getiren Arap tepe mostralarında bol miktarda hornfelse ve birkaç granit çakılına raslanmıştır. Yine bu seviyelerde, ilâve olarak, koyu gri renkli (Alt Kretase-Jura yaşlı ?) kalker çakılları da görülmektedir. Kaydedilmesi gereken diğer bir husus da, Topaloğlu sırtı doğusunda (42/24), Keçili formasyonunun muhtemelen üst kısımlarını teşkil eden bir zonda jipsli killerin teşekkül etmiş olmasıdır. Sarımtrak bir rengi olanbu zon gayet mahalli olarak bulunmaktadır.

Fosiller

Sahamız dahilinde Keçili formasyonundan fosil tayini için nümune alınamamıştır. Ancak sahanın dışında kuzeyindeki uzantısında, ruditlerle arakatgıiı olarak bulunan ince bir kumlu kalker tabakasında Lütesiyen yaşlı fosiller görülmüştür.

Yaş ve korelasyon

Keçili formasyonunun yaşı genellikle Alt-Orta Eosen olarak kabul edilmiştir. Daha altta bulunan Hacıbalı formasyonunun da İpresiyen yaşlı olması, buna mukabil üstte bulunan ve Keskin Sivrisi kuzeyindeki (48/25) Güzeren senklinalinde tezahür eden Bahşili formasyonunun Lütesiyen yaşta olması bu sonuca vardırmaktadır.

Saha dahilinde Keçili formasyonu, Bulanıkdere formasyonunun üst kısmı ile korele edilmektedir. Haymana bölgesinde Karahoca formasyonu ile (Yüksel, 1970), özellikle onun alt kısmını teşkil eden «kumlu konglomeralar» ile korele edilebilir (Çizelge I). Şerefli Koçhisar bölgesinde ise Eskipolatlı formasyonunun üst kısmı (Rigo ve Cortesini, 1960) muhtemelen Keçili formasyonuna tekabül etmektedir.

Topoğrafya görünüşü

Polijenik ruditler aşınmaya karşı oldukça dayanıklı olduklarından, her yerde yüksek tepeler oluşturur. Yer yer gelişen arenitler ve lütitler ise genellikle çukur yerler ve vadiler meydana getirir.

Yorum

Arenitli bir matriks içinde bulunan iyi yuvarlanmış çakıllı ruditlerin zaman zaman dereceli tabakalanma göstermesi, ayrıca, dereceli tabakalanma gösteren arenitler ve koyu yeşilimsi gri lütitlerle aratabakalı bulunması, yine türbid akıntı mekanizmasının faaliyette olduğuna işaret etmektedir. Hacıbalı formasyonunun çökelme şartlarının bir devamı olmakla beraber, bu sefer çakılların çok arttığı, yani karanın süratle yükselmekte ve erozyonun süratle gelişmekte olduğu anlaşılmaktadır. Bu sebepten erozyon daha derinlere nüfuz ederek, formasyonun üst kısımlarına doğru artık Alt Kretase ve Jura yaşlı formasyon çakıllarını da, hattâ bunları kesmiş olan plütondan da parçalar getirmeğe başlamıştır.

Kıyılardan, muhtemelen dere ağızlarındaki deltalardan veya

234

derelerde oluşan sellerden kopup gelen türbid akıntılar, taşıdıkları malzemeyi denizaltı erozyon kanalları içinden geçirerek, basenin en çukur yerlerine yığmıştır. Bu sebepten Keçili formasyonunun doğu ve güneydoğuya (yani «Kara»ya) doğru inceldiğini ve girift yanal geçişler yaptığını görmekteyiz. Arap Tepe'de yapılan bir tane yönelmesi (grain orientation) ölçümü, akıntının o noktada doğudan geldiğine işaret etmektedir. Gerçi bu yeterli bir delil değildir; ancak diğer delilleri de destekleyecek nitelikte olduğundan kayda değer.

Formasyonun üst kısımlarına doğru basenin dolduğu ve yer yer jipsli sedimentlerin teşekküle başladığı görülmektedir.

Doğu istiflenmesi : Yahşıhan formasyonu

Yahşıhan formasyonu, bazik volkanik kayalar (masif ve pillov yapılı bazalt, spilit, diabaz), yeşil tüf, aglomera ve tüfitler ile üste doğru çok az miktarda beyaz renkli yarı kristalin biomikrit kalker tabakalarından oluşmuştur. Karaca Ali plutonu ve onunla ilgili felsitik dayk ve siller, Yahşıhan formasyonunu keser. Alt Eosen yaşlı Karagüney formasyonu transgresif olarak Yahşıhan formasyonu üzerine gelir.

Kesitler

Yahşıhan formasyonu, Yahşıhan'ın güneyinde KD-GB yönlü faylarla parçalanmış olarak, muhtelif yerlerde gözükmektedir (38/10, 38/08, 38/06, 38/02, 38/01). Ancak formasyonun daha devamlı kesitlerini Kırıkkale'nin kuzeyinde Karaca Ali köyü GB'sında (44/14) ve batısında, Kızıldere köyü batısı (45/20) ve kuzeyinde (47/22) incelemek mümkündür.

Karaca Ali GB kesiti. — Karaca Ali'de tezahür eden iri kristalli granitik plutondan başlıyarak GB doğrultusunda gidildiğinde, Yahşıhan formasyonunun alttan üste doğru çeşitli seviyeleri görülür (Şekil 15). Granitin üst sınırı belirsizdir; burada 20-30 sm kalınlığında bir metasomatik zon vardır. Yer yer demir mineralizasyonu da gösteren bu zondaki kayaçlar silisleşmiş, serisitleşmiştir. Yahşıhan formasyonunun görülebilen alt kısımlarını koyu yeşil renkli uralit diyabazlar teşkif eder. Genellikle, masif görünüşlü bu kayalardaki piroksenler amfibole (aktinolit) dönüşmüştür (G. Elgin, 1972, sözlü görüşme). İlk 400 metrelik kalınlıkta diyabazlar hakimdir. Bundan donra yeşil renkli tabakalı tüfitler, bunlarla aratabakalı kırmızı lütit, pilov yapılı diyabaz (spilit) lavlar göze çarpar. Formasyonun haha üst kısımlarında iyi yuvarlanmış magmatik çakıllı ve tüf matriksli ruditler de dayklar ve siller Yahşıhan formasyonunu keser. Siller içinde sütunsal eklemler (columnar jointing) mevcuttur.

Formasyonun burada hesaplanan kalınlığı 800 m civarındadır. Ancak üste gelen Karagüney formasyonunun tabandaki erozyon yüzeyi, Yahşıhan formasyonunun gerçek kalınlığını yontmuştur. Batıya doğru formasyonun kalınlığının 1000 m yi aştığı sanılmaktadır.

Kızıldere civarı.— Kızıldere köyünün güneyinde tezahür eden Karaca Ali plütonundan başlıyarak batıya doğru gidildiğinde, 40-50 derece eğimlerle KB yönüne dalan Yahşıhan formasyonu tabakalarına geçilir. Altta masif görünüşlü, bariz bir tabaka yapısı göstermeyen fakat bol kırıklı koyu yeşil veya gri renkli diabazlar görülür. Üst kısımlarda tüfler, aglomeralar ve pilov lavlar vardır. Daha üstte, Karagüney formasyonunun tabanını teşkil eden diskordans yüze-

236

yinin hemen altında ise tüfitlerle arakatgılı olarak sertleşmiş lütit ve fosilli beyaz biomikrit ve biostromal kalkerler bulunur. (Şekil 16). Bu şekilde tüfit, aglomera, mikrofosilli kumlu kalker aratabakalanmasına Kızıldere kuzeyindeki mostralarda da raslanmıştır. Bu seviyeler muhtemelen Yahşıhan formasyonunun erozyondan korunmuş olan en üst kısımlarını temsil etmektedir. Formasyonun daha üst seviyeleri sahamızda görülmemiştir.

Şekil 16 — Kızıldere güneybatısında Karagüney formasyonunun kızıl renklir ruditli alt kısmı açısal bir diskordans ile Yahşıhan formasyonu üzerine oturmaktadır. (Skeç kesit; lokalite 580).

Yahşıhan köprüsü güneyi. — Granit aflörmanım çevreleyen birkaç metre kalınlığında metasomatik bir zondan ve 100- 150 m kalınlığında bir kontakt metamorfizma zonundan sonra, koyu renkli diabazlar, tüflü arenit (silisifiye) ve lütit tabakaları görülür. Formasyon felsit dayklar tarafından katedilmiştir.

Alt ve üst sınırlar

Yahşıhan formasyonunun alt sınırı her yerde metasomatize olmuştur; plutonla olan sınırı hiçbir yerde kesinlikle görülemez. Ancak, alt sınıra yakın yerlerde hiçbir taban konglomerası emaresinin bulunmayışı, bu sınırın magmatik bir kontak sınırı olduğu görünüşünü kuvvetlendirmektedir. Genellikle formasyonun tabakaları, plutonla olan sınıra paralel ise de, yer yer (örneğin Kızıldere kuzeyi) tabaka doğrultularının pluton tarafından kesildiği de görülmektedir.

Üst sınır her yerde düzensiz bir diskordans yüzeyidir. Üstteki Karagüney formasyonu ile Yahşıhan formasyonu tabakaları arasında hafif bir açısal diskordans vardır.

Yanal sınırlar

Saha dahilinde Yahşıhan formasyonunun yanal sınırlarını saptama imkânı yoktur; ancak formasyonun yer yer granit kompleksi tarafından kesildiği, sınırın ise metamorfık ve metasomatik zonlar yüzünden belirsizleştiği görülür.

Kalınlık

Yahşıhan formasyonunun kalınlığı, Karagüney formasyonu öncesi vukubulan erozyondan korunmuş olma derecesine, ayrıca plutonun üste doğru sokulma miktarına bağlı olarak, değişmektedir. Karaca Ali köyü batısında formasyonun en az 1000 metreden daha fazla bir kalınlığa sahip olduğu görülmektedir. Kuzeye doğru gidildikçe plutonun stratigrafik bakımdan yüksek seviyelere kadar sokulması ve faylanma, formasyonun kalınlığını sıfıra kadar düşürür. Yahşıhan güneyinde ise Karagüney formasyonu öncesi erozyon derecesinin gittikçe arttığını ve sadece alt kısımlara ait diabazların korunmuş olduğunu görmekteyiz. Bahşili'de Yahşıhan formasyonu ancak 80 m kalınlığı haizdir; burada üzerine diskordan olarak Bahşili formasyonu gelir. Daha güneyde Yahşıhan formasyonunun yine kalınlaşmağa başladığına dair belirtiler vardır.

Litoloji

Yahşıhan formasyonunu başlıca masif veya pilov yapılı diabazlar ile azalan oranlarda tüflü arenit, rudit (aglomera), lütit, kalker teşkil etmektedir.

Diabaz. — Formasyonun görünen kısmının yarısından fazlasını teşkil eden koyu yeşil veya koyu gri renkli diabazlar, şekil itibarıyla çeşitli (masif, parçalı, pilov) oldukları gibi, mineralojik kompozisyon bakımından da değişiklikler arzetmektedir. Bazılarında akma dokusu (flow texture) mikroskop altında barizdir. Hiç pirokseni olmayan diabaz, pirokseni amfibole dönüşmüş diabaz, olivin-ba-

238

zalt, spilit, amigdoloid spilit belli başlı tipleri teşkil etmektedir. Spilitler daha çok pilov şeklinde bulunmakta ve formasyonun üst kısımlarında yer almaktadır.

Tüflü arenit. — Köşeli bazalt (diabaz) parçacıkları (akma dokusu da görülmektedir) kayanın % 70 ini oluşturur. Az oranda kalsik plajioklaz ile bazalt kırıntıları, volkanik cam ve limonitten ibaret bir matrikste bulunur; kalsit tarafından çimentolanmıştır. Yeşil renkli bu tabakalar, bazan birkaç metre kalınlıkta olabilir. Masif görünüşlü, nadiren paralel laminalıdır.

Rudit. – Bir veya birkaç metre kalınlıkta olan rudit tabakaları çoğu zaman sedimenter yapısız ise de, bazan bariz bir dereceli tabakalanma gösterirler. Çakıl elemanları muhtelif cins diabazlardan oluşmuş, tüf malzemeli bir matriksle bağlanmıştır. Elemanları iri ve köşeli olan ruditerde matriks oranı azdır. İyi yuvarlanmış çakılları olan ruditlerde matriks oranı daha yüksek olduğu gibi bunlarda dereceli tabakalanma da görülmüştür.

Lütit. — Kızıldere civarında, Yahşıhan formasyonunun üst kısımlarında yer alan kalkerlerin yanısıra görülen lütitler, ince dokulu, sert, sarımsı açık kahverenkli tabakalardır. Diğer ünitelerle arakatgılı olarak bulunur; kalınlık birkaç santimetreden birkaç desimetreye kadar değişir.

Kalker. – Tüflü arenitlerle arakatgılı olarak görülen beyaz kalkerler, 50- 100 m kalınlıkta tabakalar halinde bulunurlar. Muhtelif derecelerde rekristalizasyon gösteren kalkerlerden bazıları biostromal (tamamen alg, bryozoa, foraminifera ve kavkı parçalarından ibaret), bazıları da kalkarenit (kalker parçacıkları, fosil kırıntıları ve taşınmış rudist) tipindedir. Rekristalizasyonun ileri olduğu yerlerde bu özellikler kaybolmuştur. Kalker içinde ayrıca, değişik yüzdelerde (en fazla % 15) volkanik malzeme de görülür.

Fosiller

Yahşıhan formasyonunda sadece kalkerlerde fosiller görülmüştür. Kızıldere doğusunda görülen bir kalkarenit içinde bulunan rudist parçası N. Karacabey tarafından Radiolidae familyasına atfedilmiştir. İnce kesitlerde E. Sirel (1972, sözlü görüşme):

Globotruncana tricarinata (QUE.)

Globotruncana sp. (stuarti grubundan) Siderolitidae Miliolidae Radiolaria

tesbit ederek muhtemel Kampaniyen - Mestrihtiyen yaşını vermiştir,

Yaş ve korelasyon

Yahşıhan formasyonunun üst kısımlarında bulunan mikrofosiller Üst Kretasenin üst seviyelerini göstermektedir. Formasyonunu alt kısımlarının yaşı hakkında elde bir bilgi yoktur. Ancak, malzemenin nisbeten çabuk biriken volkanik kökenli olduğu dikkate alınırsa, herhalde Kretase ortalarından daha eskilere gitmeyeceği düşünülebilir.

Çalışma sahamız dahilinde gerek yaş gerekse esas litolojik unsurlar bakımından Yahşıhan formasyonunu, Irmak (üst kısmı) - Ilıcapınar-Bölükdağ formasyonları ile korele etmek mümkündür (Çizelge I). Daha kuzeyde Erol (1958) «denizaltı volkanik serisinin serpantinsiz serisi» nden bahseder ve granitik-riyolitik püskürüklerin bunların içine girdiğini belirtir. Güneyde Buchardt (1957) ise aynı litolojide olan ve asit plütonla benzer münasebette bulunan bazik kayaçlara Üst Kretase yaşını vermiştir.

Topoğrafya görünüşü

Yahşıhan formasyonunun özellikle diabazların hakim olduğu alt kısımları topoğrafyada yükseklikler meydana getirir.

Yorum

Yahşıhan formasyonu volkanikleri esas itibarıyla deniz altında çökelmiştir (Fiske ve Matsuda, 1964). Yukarıya doğru lavların azalması, tüflü arenit ve dereceli rudit seviyelerinin artması, volkanizma şiddetinin biraz azaldığını, türbid akıntı ve muhtemelen olistostromların (köşeli çakıllı ruditler) baseni doldurmaya devam ettiklerini belirtir. Üst Kretase sonlarına doğru sığlaşan yerlerde teşekkül eden resiflerden kopan kırıntılar, biyostromları ve kalkarenitleri oluşturmak üzere, muhtemelen türbid akıntılarla şimdiki yerlerine gelmiştir.

Üst Kretase sonunda su yüzüne çıkarak aşınmaya uğrayan Yahşıhan formasyonunun alt kısımları da yükselmekte olan granit plütonu tarafından muhtemelen asimile edilmiştir. Plütondan gelen riyolit dayklar ve siller formasyonu kesmiş, metasomatik akışkanlar da plüton sınırına yakın yerleri etkilemiştir.

Karaca Ali plütonu

Hornblendli granit, granodiorit, diorit, siyenit ve monzonit gibi asit ve intermedier magmatik kayalardan oluşan Karaca Ali Plütonu, Kızıldere, Karaca Ali, Yahşıhan, Bahşili ve güneyi civarlarında, genellikle Yahsıhan formasyonunun altında görülür; doğuya doğru denis sahalar kapsamakla beraber birçok yerlerde Lütesyen yaşlı veya daha genç sedimentlerle örtülü olarak bulunur. Plütonun nisbeten ic kısımlarında (örneğin Karaca Ali doğusu) magmatik kayaların iri kristalli, oldukları görülür. Buna mukabil Yahşıhan formasyonu ile olan sınıra yakın yerlerde ve Yahşıhan formasyonunu kesen dayk ve sillerde, magmatik kayacın ince dokulu riyolit hattâ cam hamurlu felsit olduğu müşahade edilir. Kalınlığı birkaç metreden birkaç yüz metreye (örneğin: Keskin Sivrisi) kadar değişebilen bu ince dokulu «kabuk»zonu, ayrıca metasomatism de geçirmiştir Keskin Sivrisi'nden alman nümuneleri G. Elgin (MTA 1972 sözlü görüşme) tamamen serizitleşmiş ve silisleşmiş riyolit, trakit, dasit veya andezitler olarak nitelemiş, bunların bir autometasomatizma ve autohidratasyon geçirmiş olduklarını belirtmiştir Keskin Sivrisi güneyinde, bu zona doğru uzanan Yahşıhan formasyonuna ait kalker tabakaları silisleşmiş ve içlerinde grossular oluşmuştur Bu metasomatizma zonu içinde, Kızıldere'de galen. Karaca Ali GB'sında demir, Yahşıhan güneyinde pirit mineralleri teşekkül etmiştir.

Riyolit-felsit dayk ve sillerde, yer yer devitrifiye olmuş cam ve mikro-kristalen kuvars agrega içinde resorbsiyon gösteren düz sönmeli (straight extinction) kuvarsları çoktur. Bu tip kayaların parçacıkları, Paleosen, özellikle Alt Eosen (İpresiyen) yaşlı arenitlerde mebzul miktarda bulunmaktadır.

Teoman Norman

Karaca Ali köyünün 1 km batısında küçük bir vadi içinde granitin bazik bir dayk tarafından kesildiği görülür. Ofitik dokulu bir dolerit olan daykın çok genç, muhtemelen Pliosen tabanında görülen pilov lav yapılı bazaltlarla ilgili bulunduğunu sanıyorum.

Sınırlar

Karaca Ali Plütonunun Yahşıhan formasyonu ile olan üst sınırı her yerde ince dokulu ve metasomatizedir. Yahşıhan formasyonunun tabakalı olan kısımları genellikle plütonu bir kabuk gibi örterse de (Blumenthal, 1948, S. 69), yer yer tabaka doğrultularının plütona dik olduğu, sınırın büyük ve girintili kavisler yaptığı, Yahşıhan formasyonunun değişik seviyelerinin plütonla sınır teşkil ettiği görülür. Bu gözlemlerle birlikte, Yahşıhan formasyonunu kesen ve plütonun kenar zonuyla aynı mineralojik yapıya sahip dayklar da dikkate alındığında, plütonun Yahşıhan formasyonuna alttan girdiği sonucuna varılır.

Daha genç formasyonlarla (Karagüney, Mahmutlar, Bahşili, Neojen) plütonun üst sınırı diskordanslıdır (non-conformity).

Yaş ve Korelasyon

Saha dahilindeki gözlemler (Üst Kretase yaşlı Yahşıhan formasyonunu kesen riyolit-felsit dayklar ve siller, metasomatizma) plütonun Üst Kretase'den (muhtemelen Mestrihtiyen'den) daha genç İpresiyen'den (Karagüney formasyonu) daha yaşlı olduğunu, yani Paleosen içinde oluştuğunu belirtmektedir. Sahamızın GD'suna ve Kaman KD'suna raslayan bölgede benzer granitler üzerinde daha evvel petrolojik bir araştırma yapan M. Ayan (1959), Üst Kretase yaşlı denizaltı bazaltlarını, Üst Kretase sonrarası-Eosen öncesi granitlerin kestiği sonucuna varmıştır Daha önce Maucher (1937) Orta Anadolu'daki metasomatisma ve cevherleşmenin Tersiyer yaşlı olduğunu, Buchardt (1958) ise plütonun yerleşmesinin muhtemelen Paleosen'de yeraldığını belirtmiştir Ketin (1955, 1959, 1960, 1961, 1963, 1966) ve Erol (1969) da aynı görüşü desteklemişlerdir.

Topoğrafya görünüşü

Plütonun esas malzemesi olan iri billurlu asit-intermedier magmatik kayalar nisbeten kolay bozulur ve aşınırlar. Buna mukabil, ince dokulu olan ve kısmen metasomatizma ile silisifiye olmuş bulunan kenar kısımlar aşınmaya daha dayanıklıdır. Böylece, plütonun kenar kısımları yer yer yüksek tepeleri meydana getirirken (örneğin : Keskin Sivrisi, Kırıkkale kuzeyindeki tepeler) esas plütonun kapsadığı sahalarda yuvarlak tepeli, dalgalı ve yer yer alçak bir arazi yüzeyi gelişir.

Yorum

Muhtemelen Paleosen'in ilk yarısında Karaca Ali Plütonu yerine yerleşmiş, Yahşıhan formasyonunu delen kollar da satha kadar yükselerek asit ve intermedier volkanik kayaçları meydana getirmiştir. Bu olayların yanısıra plütonun bulunduğu saha da yükselerek dik yamaçların meydana gelmesine ve türbid akıntıların, sellerin ve denizaltı kaymalarının oluşmasına yol açmış, derinlerde (batıda) Dizilitaşlar formasyonu çökelmiştir. Paleosen'in ikinci yarısında su üstüne çıkmış bulunan kısımlar (asit volkanik malzeme ile Yahşıhan formasyonunun üst kısımları) aşınarak bir erozyon yüzeyi meydana gelmiştir. Bu sırada plütonun yerleşmesi ve metasomatizma olayları tamamlanmış bulunuyordu. Yavaş yavaş vukubulan çökme ile İpresiyen transgresyonu (Karagüney formasyonu) başlamıştı.

Karagüney formasyonu

Tersiyer yaşlı formasyonların bir taban konglomerası niteliğinde olan Karagüney formasyonu, takriben 300 metre kalınlığa ulaşan en iyi gelişmesini Karagüney Dağında (44/21), bir de bunun güneybatısı ile Yahşıhan'ın kuzeyinde tepeler arasında kalan bölgede gösterir (41/14). Her yerde, Mahmutlar formasyonunun altında konkordan ve Kırıkkale masifinin üzerinde diskordan olarak görülür. Alt kısım kızıl renkli rudit, arenit ve lütitlerden, üst kısım ise sarımtrak yeşil renkli ruditlerden oluşmuştur (Şekil 17). Yahşıhan güneyinde ve Bahşili'de de iki küçük aflorman vardır.

Tip yeri ve kesiti

Karagüney Dağı. – Ortalama 40 derece eğimle KB ve K yönlerine dalan yeşil ruditler, tane boyu üste doğru incelerek yeşilimsi sarı arenitler halinde tedricen Mahmutlar formasyonuna geçerler. 150

Teoman Norman

Şekil 17 — Karagüney formasyonu için kompozit stratigrafi kesiti (lÖçeksiz)

m kalındığındaki yeşil ruditlerin altında ise, faylanmadan ötürü, kalınlığı tamamen bilinmeyen, ancak en az 100 m olan kızıl renkli arenit arakatgılı kızıl renkli ruditler bulunur. Yeşil rudit tabakaları yanal olarak, batıya doğru izlendiğinde tedricen sarı renkli arenitler haline geçer (Şekil 18). Bazı yeşil rudit tabakalarının doğuya doğru izlendiklerinde, kızıl renkli ruditlerle girift oldukları da görülür.

Kızıl renkli ruditlerin tabanı, hafifçe açısal bir diskordans ile Kırıkkale masifinin yersel olarak termal metamorfizmadan az etkilenmiş sedimentleri (Yahşıhan formasyonu) üzerine oturur (Şekil 16).

Gâvurkaya tepe. – Güneybatıya dalan yeşil renkli rudit tabakaları, üste doğru tedricen sarı arenitlere geçer. Altta ise 1 metrelik konkordan bir geçişten sonra kızıl renkli konglomeralar bulunur. Toplam kalınlığı tahminen 250 m civarında olan Karagüney formasyonunun tabanı, diskordans olarak Kırıkkale masifine ait tüfit ve bazik kayaçların (Yahşıhan formasyonu) bir erozyon yüzeyi üzerine oturur.

Alt ve üst sınırlar

Kara güney formasyonunun üst sınırı her yerde tedrici olarak üstteki Mahmutlar formasyonuna geçer. Ancak Bahşili'deki çok küçük römanye bir Karagüney formasyonu mostrası üzerine Bahşili formasyonu açısal bir diskordansla oturur.

Şekil 18 — Kızıldere köyü ile Güzeren mahallesi arasının hava fotoğrafı ve yerden kontrol ile yapılmış jeoloji haritası. Senklinali oluşturan litostratigrafi birimleri olan Bulanıkdere, Mahmutlar, Karagüney (yeşil ve kızıl) formasyonlarının birbirlerine yanal geçişli oldukları açıkça görülebilmektedir. Bulanık Dere'nin senklinal ekseni yerine, yumuşak lütitli Bulanıkdere formasyonu içinde aktığına dikkat ediniz.

Alt sınır ise her yerde Yahşıhan formasyonu üzerine diskordanslıdır. Ancak, bu diskordans bazı yerlerde açısal, bazı yerlerde de sadece girintili çıkıntılı bir erozyon yüzeyi olarak görülmektedir. Bahşili'deki küçük aflörman ise doğrudan doğruya granit plütonun bir aşınma yüzeyine oturur.

Yanal sınırlar

Formasyonun yanal sınırları batıya ve kuzeybatıya doğru tedrici olarak Mahmutlar formasyonuna geçer. Kuzeydoğu, güneybatı, güney ve doğu yönlerinde formasyonun yanal sınırları izlenememiştir.

Kalınlık

Formasyonun en kalın olduğu yerler Karagüney ve Yahşıhan kuzeyi olup, 250-300 metre civarındadır. Bazı bindirme faylar bu kalınlığı zahiren arttırmaktadır. Kuzeydoğu ve güneydoğu yönlerine gidildikçe azaldığı müşahede edilir; Keskin sivrisi kuzeyinde (36/09) ve Bahşili'de (37/05) bu kalınlığın kalınlığın 10 - 20 cm civarında olduğu görülmektedir; Bahşili'deki incelmenin kısmen aşınmadan dolayı olduğu söylenebilir.

Litoloji

Yeşil renkli ruditler. — Boyları 2-10 sm arasında değişen. ortalama 3 sm civarında olan çok iyi yuvarlanmış çakıllar sarımtrak yeşil bir arenit matriks içinde bulunur; kalsit çimento ile bağlanmıştır. Çakıl türleri çoğunlukla asit volkanik ve damar kayaçları (felsit, riyolit, dasit) ile silifiye olmuş tüfler ve kuvarstır. Daha az oranda olmak üzere bazalt ve andesit çakılları da bulunur. Nadiren bulunan kalker çakıllarından bazıları Paleosen, bazıları da Mestrihtiyen fosilleri ihtiva etmektedir. Granit ve kumtaşı çakılları bulunmamıştır. Rudit tabakaları 75-150 sm kalınlığında olup sarımsı kaba dokulu arenitler ve bazan da sarımsı-pembemsi ince lütit tabakaları ile arakatgılıdır.

Kızıl renkli ruditler.— Çapları 2-30 sm arasında değişen. ortalama 5 sm büyüklükte iyi yuvarlanmış çakıllar, kırmızı renkli arenit ve az lütit karışımı bir matriks içinde bulunur; gevşek bir kalsit kil karışımı tarafından bağlanmıştır. Çakıllar çoğunlukla bazalt, andezit, kuvars, kuvarsit ve felsit cinsindendir. Granit çakılı görülememiştir. Rudit tabakaları bazan birkaç metre kalınlığında düzensiz tabakalar halindedir. Dereceli tabakalanma veya başka bir sedimenter yapı göstermezler. Aratabakalı olan ince rudit veya kaba arenitlerde (40-50 sm kalınlıkta) ise bazan çapraz tabakalanma (cross bedding) görülür.

Fosiller

Karagüney Dağının doğu eteklerinde, yeşil renkli ruditler içinde bulunan iyi yuvarlanmış kalker çakıllarda B. Sözeri (M.TA. Rap. NO S.S. 69/19):

> **Disticoplax biserialis** DIETRICH Rotalla sp. Miliolidae

saptayarak Paleosen yaşını vermiştir. Aynı yerden alınan diğer çakıl' larda N. Karacabey (M.T.A. Rap. No. 1969/249) :

> Lapeirousia jouanneti (DES. MOUL.) BAYLE Sabinia sp.

tayin etmiş ve Mestrihtiyen yaşını vermiştir.

Yaş ve korelasyon

Karagüney formasyonu içinde Mestrihtiyen ve Paleosen yaşlı çakıllar bulunmuştur. Yanal olarak İpresiyen yaşlı sarı renkli arenitlere (Mahmutlar formasyonu) geçmekte, yer yer de aynı formasyon tarafında örtülmektedir. Bu delillere dayanarak formasyonun yaşının esas itibarıyla İpresiyen olduğu anlaşılmaktadır. Ancak, mahiyeti itibariyle formasyonun diyakronik olması, bazı kısımlarının Alt İpresiyen, bazı kısımlarının ise Üst İpresiyen hattâ Lütesyen yaşlı olmasını gerektirir.

Çalışma sahası dahilinde Karagüney formasyonunu Bulanıkdere ve Hacıbalı formasyonlarının alt kısımları ile korele etmek mümkündür (Şekil 19). Şerefli Koçhisar ve Polatlı bölgelerinde tesbit edilmiş olan Kartal konglomerası (Riga ve Cortesini. 1960) muhtemelen Karagüney formasyonunun eşedeğeridir (Çizelge I).

Topoğrafya görünüşü

Yeşil renkli ruditler ysek tepeleri, kızıl renkli ruditler ve arenitler ise vadi ve çukurları meydana getirirler. Formasyonun her iki kısmı da yer yer peribacası, oyuk ve mağara tipi aşınma şekilleri gösterirler.

Yorum

Karagüney formasyonu karaya çok yakın yerlerde, selleri getiren dere ağızlarının ön kısımlarında, muhtemelen litoral bölgelerde çökelmiş görünmektedir. Genellikle transgresif bir taban konglomerası hüviyetini taşımaktadır.

Cakılların iyi yuvarlanmış olmaları, buna mukabil boylanmanın kötü olusu, malzemenin dik vamaclı karalardan dereler ve sellerle geldiğini, dalgaların boylandırmasına (sorting) fırsat kalmadan neritik sahalarda cökeldiğini belirtmektedir. Neritik ortamda cökeldikten sonra malzemenin dalgaların etkisiyle boylanmaması için, bu kısmın da yavaş yavaş çökmesi ve yeni gelecek malzeme tarafından süratle örtülmesi gerekmektedir. Karaların yükselmesi esnasında denizel kısımların da çökmesi, başka bir deyimle, deniz suyunun çöken yerlere dolması, izostatik bir yükselmeden ziyade tektonik sıkışmadan ileri gelen bir yükselmeye işaret edebilir. Bu suretle «az önce» teşekkül eden bir formasyon (Paleosen) kısmen yükselmekte ve aşınmakta, sonra çökmekte olan basende teşekkül eden daha genç formasyona (İpresiyen) katılmaktadır. Karaların daha iç kısımlarında, daha çok yükselmiş olan yerlerde ise, daha derin tabakalar (Yahşıhan formasyonu) aşınarak malzeme sağlamaktadır. Nihayet, aşınmış olan kıyısal bölge de denizel kısmın çökmesine iştirak ederek transgresyon meydana gelmektedir.

Formasyonun çakılları arasında granit çakılları olmaması, buna mukabil Yahşıhan formasyonu elemanlarının ve bunları kesen asit ve intermediyer damar taşlarına ait çakılların bol bol bulunması, ayrıca Karagüney formasyonunun genellikle Yahşıhan formasyonunun üzerinde durması, bu sırada erozyonun Karaca Ali plütonuna kadar, derine ulaşmamış olduğuna işaret etmektedir.

Mahmutlar formasyonu

Sarı renkli kalsit çimentolu ince ve kaba kumlu arenit tabakaları ile sarımsı kahverenkli lütitlerden oluşan bu formasyonda, yer yer fosilli kumlu kalker mercekleri de görülür. Formasyon en kalın yerinde 150 m olup bazı yerlerde birkaç metreye kadar incelmektedir.

Tip yeri ve kesiti

Mahmutlar formasyonu saha dahilinde Mahmutlar köyünün doğusunda (41/19) ve kuzeyinde (43/22), ayrıca, Yahşıhan'ın kuzeyinde yer alan KB-GD sıralanmalı bir dizi tepe ile Yahşıhan'ın güneyinde (36/09, 37/09) incelenebilir.

Mahmutlar doğusu. — Tepede 20 derece eğimle batıya dalan sarı renkli (10-40 sm kalınlıktaki) arenit tabakaları ve arakatgılı sarımsı kahverenkli lütit tabakalarının (5-20 sm), Bulanıkdere formasyonunun alt kısmına ait yeşilimsi gri lütit, arenit ve ruditlerin altında kayboldukları görülür. Sarı renkli arenitlerin üst tabakalarının Dikmera tepede «havada» kalmaları ilk bakışta bir fayı düşündürürse de, bu durumun yanal geçişli kısımların burada ezoryonla aşınmış olmasından ileri geldiği anlaşılmaktadır. Formasyon takriben 150 m kalınlıkta olup, burada, alttaki Karagüney formasyonunun yeşil renkli konglomeraları üzerinde konkordan olarak görülmektedir.

Güzeren mahallesi. — Mahmutlar köyünün kuzeyinde Güzeren mahallesinde (43/22) görülen geniş bir senklinalin kuzey kanadı Bulanıkdere formasyonundan, güney kanadı ise Mahmutlar formasyonunun kayaçlarından müteşekkildir. Gerek arazide, gerekse hava fotoğraflarında bu iki formasyonun birbirlerine yanal geçişli olduğu görülebilmektedir (Şekil 18). Doğuya doğru tabaka doğrultusu boyunca gidildiğinde sarı renkli kumtaşlarının bu sefer de yeşil ruditlere geçtiği müşahade edilir.

Gâvurkaya tepe batısı. – Karagüney formasyonunun üst kısmı olan yeşil ruditler üzerine konkordan olarak gelen sarı renkli kalsit çimentolu arenit tabakaları ve bunlarla arakatgılı sarımsı kahverenkli lütitten oluşmuş Mahmutlar formasyonu, 15-20 derecelik bir eğimle güneybatıya dalarak Bulanıkdere formasyonunun yeşilimsi gri renkli lütit ve arenitleri altında kaybolur. Burada Mahmutlar formasyonunun kalınlığı 100 m olarak tahmin edilmiştir. Yer yer, 150-200 m uzunlukta mercekler halinde çok kalkerli kısımlar görülür; buraları makro ve mikro fosiller bakımından çok zengindir (40/13, 41/13, 42/13).

Yahşıhan güneyi. — Sarı renkli arenitler içerisinde 150-200 m uzunluğunda ve 10-15 sm kalınlığında mercekler halinde gelişen kumlu

Teoman Norman

kalkerler bol fosillidir; İpresiyen - Lütesiyen yaşını verir. Karagüney formasyonu ruditleri üzerine konkordan olarak gelir. Sarı renkli arenitlerin bu bölgedeki kesin kalınlığı bilinmemekle beraber, en az 200 m olduğu hesaplanmıştır.

Alt ve üst sınırlar

Mahmutlar formasyonu üste doğru Bulanıkdere formasyonuna, alta doğru da Karagüney formasyonuna tedrici geçişlidir.

Yanal sınırlar

Doğuya (Kırıkkale masifine) doğru formasyon yanal olarak Karagüney yeşil ruditlerine, kuzeye, batıya ve güneybatıya (Masifin dışına) doğru ise yanal olarak Bulanıkdere lütit ve arenitlerine geçer.

Kalınlık

Mahmutlar formasyonun kalınlığı değişken olup, Mahmutlar köyü civarında 150 m, Yahşıhan güneyinde ise 200 m dir. Diğer mostralarda kalınlık daha azdır, Keskin Sivrisi civarında birkaç metreye iner.

Litoloji

Sarı renkli arenitler. — İnce ve kaba kum, bazan mikrokonglomeratik yapıda olan bu kayaçlar, 20 -40 sm kalınlığında kalsit çimentolu tabakalar halinde tezahür eder. Tabakalarda iç yapı olarak sadece düzgün paralel laminasyon veya hiç laminasyonsuz bir yapı görülmüştür; dereceli tabakalanma ve taban yapıları yoktur. Bol bitki kalıntıları kömürleşmiştir. İnce kesitte sivri köşeli veya köşeleri biraz aşınmış (subangular) kuvars (% 50), köşeleri biraz aşınmış mikrokristalen agregalı ve volkanik kuvars ihtiva eden parçacıklar (% 20), yuvarlanmış ortoklaz (% 5) ve kalker (% 5) ile kalsit ve limonitten ibaret bir matriks görülür.

Kumlu kalkerler. — Sarı renkli arenitler içersinde 150 - 200 m uzunlukta merceksel yapılar halinde görülür. Bol mikro ve makro fosillidir. Kumlu kısmın bileşimi, sarı renkli arenitlere benzer. Matriksin kalker (sparit) bileşeni fazladır.

Sarımsı kahverenkli lütit. - Arenitlerle aratabakalı olarak görü-

250

lür. Kömürleşmiş, fazla miktarda, fosil bitki kalıntıları (dal ve kabuk parçaları) ihtiva ederler. Solucan kanalları (sonradan kumla dolmuş) sık sık görülür.

Fosiller

Mahmutlar formasyonunun en fosilli kısımları kumlu kalker mercekleridir; sarı renkli arenit ve lütitlerde ancak bitki kalıntıları görülmüştür. Tip lokalite olan Mahmutlar köyündeki aflörmanda Baykal (1943) :

Alveolina sp.

bulmuş ve genellikle Eosen yaşını vermiştir.

Yahşıhan kuzeyindeki tepelerde bulunan sarımtrak kumlu kalkerden ise topladığım numunelerde E. Sirel ve B. Sözeri aşağıdaki mikrofaunayı tayin etmiştir (op. cit.) :

Nummulites cf. globulus LEYM.

Discocyclina sp.

Robulus sp.

Globigerina sp.

Operculina sp.

Rotalidae

Miliolidae

Bryozoa

Bu fosillerin Üst Paleosen-İpresien-Alt Lütesyen yaşta olduğu belirtilmiştir. Makrofauna olarak aynı yerden alınan fosillerde A. Güngör (M.T.A. Rap. No. 380/972)

Lucina aff. corbarica LEYM.

L. aff. corbarica var. quadrata LEYM.

Velates schmiedeli CHEMNITZ

Spondylus sp.

tayin ederek İpresiyen-Lütesyen yaşını vermiştir. Yahşıhan güneyindeki aflörmanlardan alınan nümunelerde C. Öztemur ve B. Sözeri (op, cit.) :

Orbitolites compianatus LAMARCK

Nummulites sp. (globulus grubu)

Discocyclina sp.

Operculina sp.

Alveolina sp.

Rotalia sp.

tayin ederek Lütesyen yaşını vermiştir. Daha önce aynı yerde

Nummulites guettardi D'ARCH.

bulunduğu da Erol (1954) tarafından belirtilmişti. Chaput (1936) buradan topladığı nümunelerde şu faunayı kaydeder :

Nummulites alacicus LEYM.

N. globulus LEYM. N. granifer DOUV. Alveolina sp.

Miliolidea

Chaput'un bildirdiğine göre M. Doncieux bunları İpresiyen-Alt Lütesyen yaşına atfetmektedir (1947, s. 252).

Yaş ve korelasyon

Fosil listelerinin de belirttiği gibi, Mahmutlar formasyonunun yaşı İpresiyen'den Lütesyen'e kadar değişmektedir. Yanal geçişler de dikkate alınacak olursa, formasyonun diyakronik olduğu anlaşılmaktadır. Bu bakımdan saha dahilinde bu formasyonu, Bulanıkdere formasyonu, dolayısıyla, Hacıbalı ve Keçili formasyonlarının bir kısmı ile korele etmek mümkündür. (Şekil 19). Mahmutlar formasyonu, Erol (1954) tarafından belirtilen «Sarımsı greler» ile, muhtemelen Güre dağında görülen «Beyaz algli kalker» ünitelerine karşılık gelmektedir (Çizelge I).

Topoğrafya görünüşü

Genellikle Mahmutlar formasyonu tepeler meydana getirir. Alttaki yeşil renkli konglomeralar (Karagüney formasyonu) aşınmaya daha da mukavim olduklarından, onların meydana getirdiği tepelerin eteklerini de Mahmutlar formasyonu teşkil eder.

Yorum

Mahmutlar formasyonu dalgaların ve deniz akıntılarının zaman zaman etkili olduğu neritik bir ortamda gelişmiştir. Denizaltının yer yer hafifçe yükselmiş kısımlarında resifal olma temayülü ile kumlu kalkerler oluşmuş ve bol miktarda canlılar yaşamıştır. Formasyon tabakalarında türbid akıntılarla ilişik belirtiler yoktur. Bu kayaçların daha «oturaklı» ve tektonik hareketleri nisbeten seyrek olan bir bölgede; geliştikleri anlaşılmaktadır. Tanelerin biraz yuvarlanmış olması, bitki dal parçacıkları ve aratabakalı lütitlerin varlığı, sığ neritik ortamı destekler mahiyettedir.

Basenin en derin orta kısımlarını dolduran Hacıbalı ve Keçili formasyonlarının bazı üniteleri, Mahmutlar formasyonunu (ve Bulanıkdere formasyonunu) muhtemelen kanallar içerisinde aşmış olmalıdır. Ancak Mahmutlar formasyonunda böyle kanalları bulup saptamak mümkün olmamıştır.

Bulanıkdere formasyonu

Keçili (45/27) ile Mahmutlar (40/19) arasında, Bulanıkdere boyunca tezahür eden bu formasyonun hakim unsuru lütittir (Derenin bulanık akmasının sebebi de bu kayaçtır). Aratabakalı olarak ince ve orta kalınlıkta arenitler ile, daha az oranda ruditler görülür. Formasyonun kalınlığı 500- 1000 m arasında değişir. Ayrıca Yahşıhan kuzeyinde ve Bahşili batısında da formasyonu incelemek mümkündür

Tip yeri ve kesitleri

Mahmutlar civarı. – Formasyonunun tabakaları, ortalama olarak 30°C eğimle batıya dalar; bu suretle formasyonun tabanı doğuda, Dikmera tepenin (41/19) batı yamaçlarında görülür. Burada, sarı renkli kalsit çimentolu arenitlerin (Mahmutlar formasyonu) üzerine konkordan ve kısmende yanal geçişli olarak koyu yeşilimsi gri lütit, polijenik rudit ve arenit tabakalarının geldiği görülür (Şekil 20

a). Takriben 150 m kalınlığında olan bu alt kısmın üst taraflarına doğru arenit tabakaları azalır, ruditler kaybolur. Daha üstte bulunan 300 m kalınlığındaki bir kısım ise tamamen lütit ve çok ince lamina halinde (0,5 - 1 sm) ince dokulu arenitlerden ibarettir. En üst kısmı teşkil eden 100 m'lik bölümde, koyu yeşilimsi gri lütit, kahverenkli, laminalı ve ripple-drift gösteren arenit, kazan da aynı rengi haiz çok iyi dereceli tabakalı kaba arenit veya rudit tabakaları görülmektedir. Lütitlerin hakim olduğu kısımlarda kalsit çimentolu konkresyonlar teşekkül etmiştir; bunlar laminaların tabakalanmasını etkilemezler (Şekil 21).

Bulanıkdere. – Formasyonun orta kısmı dere boyunca tezahür eder. Kuzeye doğru lütit renginin koyulaştığı ve yer yer mavimsi

Şekil 20 — Bulanıkdere formasyonunun stratigrafi kesitleri (Ölçeksiz).

griye dönüştüğü müşahade edilmiştir. İnce lamina halinde kahverenkli arenitler ve nadiren açık krem renkli, kalsit çimentolu orta kalınlıkta (50 sm) arenit tabakaları ile, 1 m kalınlığında polijenik rudit tabakalarına raslanır. Güzeren civarında, arenit tabakalarının doğuya doğru kalınlaştığı ve yanal olarak Mahmutlar formasyonuna geçtiği görülmektedir.

Keçili güneyi. - Güneydoğuda bulunan mavimsi gri renkli ve

kalsit konkresyonlu Bulanıkdere lütitleri ile batıda bulunan koyu yeşilimsi gri Hacıbalı formasyonu lütitlerinin birbirlerine yanal olarak tedricen geçtiği Keçili civarında izlenebilmektedir. Ayrıca, Bulanıkdere formasyonu lütitlerinin üst kısmını teşkil edenlerin, Keçili formasyonu polijenik ruditleri tarafından konkordan olarak örtüldüğü, ancak kısmen de en üst tabakalarla yanal giriftlikler (interfingering) gösterdiği görülmektedir. Yer yer görülen sualtı heyelan tabakaları kıvrılmış arenit blokları ve iyi yuvarlanmış çakılları ihtiva eden mil matriks içindedir (Şekil 22).

Keskin Sivrisi kuzeyi. – Kabaca doğu-batı eksenli bir senklinalin kuzey kanadını teşkil eden Bulanıkdere formasyonunun en üst kısmı, yeşilimsi gri lütitler ve bunlarla aratabakalı kahverenkli, kalsit çimentolu ve dereceli tabakalanma gösteren 20-30 sm kalınlığında arenitlerden oluşmuştur. Bu tabakaların üzerine konkordan olarak bol granit ve hornfels çakıllı sarılı-kırmızılı ruditleri ile Bahşili formasyonu gelir (Şekil 20 b).

Doğantepe kuzeyi. — Yahşıhan'ın kuzeyinde oldukça geniş bir alana yayılmış bulunan Bulanıkdere formasyonu, muhtelif küçük kıvrımlar yapmasına rağmen, genellikle 20 derecelik bir eğimle güney batıya dalmaktadır. Kuzeydoğuda en altta, koyu yeşilimsi gri renkli lütitler ve aratabakalı aynı renkte arenitler vardır; bunlar sarı renkli, yer yer kalkerli ve fosilli bir arenit (Mahmutlar formasyonu) üzerine konkordan olarak gelir. Daha üstte 250-300 m kalınlığında bir kısım sadece lütit ve ince arenit laminalarından müteşekkildir. Doğan tepe (38/13) de formasyonun en üstünü teşkil eden yeşilimsi gri lütit ve laminalı kahverenkli arenit tabakaları, konkordan olarak Keçili formasyonunun polijenik ruditleri tarafından örtülür.

Bahşili batısı. – Burada Bulanıkdere formasyonunun sadece üst kısımları görülür. Koyu yeşilimsi gri renkli lütitlerle aratabakalı bulunan kahverenkli, dereceli tabakalanma gösteren, nümmilit ihtiva eden arenitler üzerine takriben 100 m kalınlığında koyu mavimsi gri renkli lütitler gelir. Bunların üzerine de konkordan olarak sarı, beyaz, açık yeşil ve kırmızı arenitler, sarımtrak krem kalker bankları, sarı ve kırmızı ruditler (Bahşili formasyonu) gelir.

Şekil 21 — Keçili doğusunda Bulanıkdere formasyonunda konkresyonlar. Bindirme fayı kuzeybatıdan bindirmektedir. (Fotoğraftan çizilmiştir.)

Şekil 22 — Keçili güneyinde Bulanıkdere formasyonunda sualtı heyelanı tabakası. Kaba bir derecelenme de görülmektedir. (Çekicin sapı 30 sm. fotoğraftan çizilmiştir).

Alt ve üst sınırlar

Bulanıkdere formasyonunun alt sınırı doğuda daima Mahmutlar formasyonunun üzerinde, onunla konkordan, kısmen de yanal geçişli olarak görülür. Üst sınır ise bazan Keçili formasyonu, bazan da Bahşili formasyonu ile konkordan olarak tayin edilmiştir. Alt sınır gibi üst sınırın da biraz diyakronik olduğu anlaşılmaktadır.

Yanal sınırlar

Batıda formasyonun alt kısımlarının yanal olarak Hacıbalı formasyonuna geçtiği, üst kısımların ise kısmen Keçili formasyonu ile girift olduğu Keçili civarında müşahade edilmiştir. Doğuda ise Bulanıkdere formasyonunun alt kısımlarının Mahmutlar formasyonuna, onun da yanal olarak Karagüney konglomeralarına geçtiği görülmektedir. Bu durum, özellikle hava fotoğraflarında kolaylıkla seçilir (Şekil 18).

Kalınlık

«Plâstik» yapısından dolayı birçok kıvrımlar gösteren Bulanıkdere formasyonunun kalınlığı Yahşıhan kuzeyinde ve Mahmutlar şarklısı kesitlerinde 500 m civarında, Keçili bölgesinde ise 1000 m civarında tahmin edilmiştir; sonuncu rakkam biraz daha şüphelidir. Bulanıkdere formasyonunun, kısmen yanal geçişlerden, kısmen de tektonik hadiselerden dolayı yer yer çok inceldiği, hattâ bazan tamamen ortadan kaybolduğu görülmektedir (Örneğin, Keskin Sivrisi kuzeyi ve Yahşıhan güneyi).

Litoloji

Bulanıkdere formasyonunu teşkil eden kalsit konkresyonlu koyu: yeşilimsi gri ve mavimtrak gri renkli lütitler, ince dokulu, laminalı, arenitler, koyu yeşilimsi kahverenkli, dereceli tabakalanma gösteren arenitler ve dereceli tabakalanma gösteren iyi yuvarlanmış çakıllı polijenik ruditler daha evvel Hacıbalı formasyonu ve Keçili formasyonu: konularında açıklanmıştı. Burada ilâve edilmesi gereken husus, formasyonunun üst kısımlarında ayrıca kahverenkli, dereceli tabakalanma göstermeyen, buna mukabil dalgalı laminalı, düz paralel laminalı veya «ripple-drift» tarzında çapraz laminalı iç sedimenter yapılar gösteren 20-30 sm kalınlıkta kalker çimentolu arenit tabakalarının mevcudiyetidir. Buna benzer tabakalar Dizilitaşlar formasyonunun D4 üyesinde de görülmüştür.

Fosiller

Bulanıkdere formasyonunda yalnız Bahşili batısında, formasyonun üst kısmını teşkil eden aflörmanda (36/06) arenitler içinde mikro fosiller bulunmuştur. Tayinleri B. Sözeri yapmış ve :

> Nummulites sp. Globorotalia sp. Gastropod

bularak nümuneye Eosen yaşını vermiştir (M.T.A. Rap. No. B.S. 72/1}.

Yaş ve korelesyon

Formasyonun tabanında görülen Mahmutlar formasyonunun yaşı Ipresiyen-Lütesyen, üstte bulunan Bahşili formasyonunun ise Lütesyen- Priaboniyen olarak saptanmıştır. Bu sebepten Bulanıkdere formasyonunun İpresiyen veya daha genel bir deyimle Alt Eosen yaşta olduğu anlaşılmaktadır.

Teoman Norman

Haymana bölgesindeki Karahoca formasyonu (Yüksel, 1970) ile Şerefli Koçhisar bölgesindeki Eskipolatlı formasyonunun alt kısmı (Rigo ve Cortesini) Bulanıkdere formasyonu ile korele edilebilir (Çizelge I). Erol (1954) tarafından belirtilen «yeşil renkli konglomera gre ve marnlar» çoğunlukla Bulanıkdere formasyonuna ait olmaktadır.

Topoğrafya görünüşü

Bünyesindeki yumuşak lütitlerden dolayı Bulanıkdere formasyonu, özellikle formasyonun orta kısımları, her yerde çukurlukları, alçak düzlükleri ve vadileri oluşturur.

Yorum

Lütitlerin hakim olduğu Bulanıkdere formasyonunun yanal olarak içlerinde zaman zaman resifal bir gelişme gösteren neritik sarı kumtaşlarına geçmesi (Mahmutlar formasyonu), lütitlerin esas itibarıyla basenin tatlı meyilli yamaçlarında çökeldiğine («clino environment», Rich, 1951) işaret etmektedir. Yoğunluğu nisbeten daha az olan arenitli türbiditler zaman zaman bu ortama yayılmakta, buna mukabil daha yoğun olan ruditli türbiditler ve olistostromlar (polijenik ruditler) ise bu ortamı erozyon kanalları içinde geçerek daha derinlere, basenin çukurluklarına yerleşmektedir (Keçili formasyonu).

Hacıbalı ve onun üstündeki Keçili formasyonlarıyla yaşıt olan Bulanıkdere formasyonunun litolojik özellikleri, farklı bir tektonizma veya erozyondan ziyade, farklı bir çökelme ortamım yansıtmaktadır. Her ne olursa olsun, bu ortam normal dalga tabanının (wave base) erişebileceği derinliklerden daha aşağıda, örneğin 500 m'den daha derinde olmalıdır.

Bahşili formasyonu

Genellikle Keçili ve Bulanıkdere formasyonları üzerine konkordan olarak, Mahmutlar, Karagüney ve Yahşıhan formasyonları üzerine ise bir açısal diskordans ile gelen Bahşili formasyonu, sarımsı, pembemsi, yeşilimsi ve kırmızı renklerden rudit, arenit ve nadiren kumlu kalker mercekleri ile yer yer lagün kalkeri ve jipslerden teşekkül etmiştir. Bazı yerlerde Karaca Ali plütonu üzerine de transgresiftir.

Tip yeri ve kesiti

Bahşili formasyonu, Bahşili köyü güneyinde (37/05) ve batısında (36/06), Yahşıhan güneybatısında (34/08), Keskin Sivrisi kuzeyinde (47/24) incelenebilir.

Bahşili güneyi. — Bahşili köyünün hemen güneyinde görülen Sarıkayalar mevkkinde, 150 m kalınlığında kaba elemanlı rudit tabakaları 50 derecelik bir eğimle GGD'ya dalar ve formasyonun başlangıcını belirtirler. Tabaka doğrultusunda batıya doğru izlendiğinde, bunların sarı arenitlere dönüştüğü, bu arenitlerin içinde kumlu kalker (fosilli) merceklerinin olduğu görülür. Bütün bu üniteler, Yahşıhan formasyonu ve Karaca Ali platonu, üzerinde diskordandır. Kaba elemanlı rudit üzerine, takriben 100 m kalınlığı olan sarı, beyaz, pembe renkli arenitler ve küçük taneli ruditler gelir; bunlarda sık sık çapraz tabakalanma görülür. Daha üstte ise, yersel olarak gelişmiş koyu gri-yeşil renkli ince bir lütit seviyesinden sonra, kalınlığı en az birkaç yüz metreyi bulan kırmızı ve yeşil ruditler, arenitler ve lütitler bulunur (Şekil 23 a).

Bahşili batısı. — Bulanıkdere formasyonunun üst kısımlarını temsil eden yeşilimsi kahverenkli arenitler ve koyu gri lütitler üzerine konkordan olarak gelen sarı arenitler ile iri elemanlı ruditler, Bahşili formasyonunun alt kısımlarını teşkil eder (Şekil 23 b). Yaklaşık olarak 200 m kalınlığında olan bu kısım üzerine birkaçyüz metre kalınlıkta kırmızı ve yeşil rudit, arenit ve lütitler gelir.

Yahşıhan güneybatısı. — İki fay arasında sıkışmış olan bu bölgede Bahşili formasyonunun birçok kıvrılma ve faylanmalara maruz kaldığı görülür. Çövün tepe (33/07) doğusunda, Keçili formasyonuna ait ruditler üzerine sarı arenit, kırmızı rudit ve arenit ile ince jips pullarını havi yeşilimsi lütitler, bir de 10 m kalınlığında lagün kalkeri seviyesi gelir. Yahşıhan'a doğru ilerledikçe bu karmaşık litolojiye yer yer jips mercekleri de dahil olur. Yahşıhan'ın doğu ve kuzeydoğusunda ise sarı, beyaz ve açık yeşil arenitler ile sarı renkli kalker çimentolu ruditlerin çoğunlukta olduğu görülür. Arenitlerde çapraz tabakalanma mebzuldür.

Teoman Norman

Keskin Sivrisi kuzeyi. — Bahsin formasyonunun taban kısmına ait 15 m kalınlığında iri elemanlı rudit tabakası, Bulanıkdere formasyonunun üst kısmını teşkil eden yeşilimsi lütit ve arenit aratabakalarının üzerine konkordan olarak gelmektedir. İri elemanlı rudit tabakasının üzerinde sarı, beyaz ve pembe renkli kumtaşları ile nadir kalker mercekleri (fosilli), daha üstte ise kırmızı lütit, arenit ve ruditler ile jipsli seviyeler bulunmaktadır. Arenitlerde çapraz tabakalanma, lütitlerde kuruma çatlakları (mud cracks) vardır. Kompleks tektonik yapılardan ve formasyonun üst sınırının görülmemesinden ötürü, bu bölgede ünite kalınlıklarını hesaplamak mümkün olmamıştır.

a) Bahşili güneyi, b) Bahşili batısı.

Alt ve üst sınırlar

Bahşili formasyonunun alt sınırı, Bahşili güneyi hariç, heryerde Bulanıkdere formasyonunun üst kısmı veya onun eş değeri Keçili formasyonu üzerine konkordan olarak gelmektedir. Bahşili güneyinde ise daha yaşlı olan Karagüney ve Yahşıhan formasyonları ile Karaca Ali plütonu üzerinde diskordandır.

Formasyonun üst sınırı sahamızda görülememektedir. Ancak, bütün eski Tersiyer ve daha yaşlı formasyonları örten yatay taba-

260

kalı Neojen ruditleri, Bahşili formasyonunu da diskordan olarak örtmektedir.

Yanal sınırlar ve kalınlık

Formasyon içindeki kaya birimlerinin yanal sınırları sık sık girift görünmektedir. Kalınlığı yüzlerce metreyi bulur; sahamız dahilinde kalınlık hususunda kesin bir sonuca varmak güçtür.

Litoloji

Bahşili formasyonu çok çeşitli litoloji birimlerinden oluşmuştur; bunların başlıcaları : iri elemanlı ruditler (alt kısım), alacalı renkli arenitler, denizel kumlu kalker mercekleri, lagün kalkeri, kırmızı ruditler, kırmızı arenitler, jipsli kırmızı lütitler, pembe-beyaz jips mercekleri ve koyu gri-yeşil lütitlerdir.

İri elemanlı ruditler. — Bazıları 1 metre çapında olabilen, genellikle 10-30 sm çaplı çok iyi yuvarlanmış boider ve çakıllardan oluşan bu tabakanın elemanları çoğunlukla Kırıkkale masifine ait granit, grano- diorit, siyenit, kuvarsit, felsit, yeşil tııf ve bazik magmatik kayalardan meydana gelir. Pembe-sarı renkli arenit bir matriks içinde bulunur (Örneğin, Bahşili köyü doğusunda Sarıkayalar mevkii).

Alacalı renkli arenitler. – Biraz köşeli (subangular) veya biraz yuvarlanmış (subrounded) kuvars, kuvarsit ve mikrokristalen kuvars tanelerinden oluşmuş arenitler, hafifçe kalsit çimentolu olup, çapraz tabakalanma yapıları gösterirler. Tane büyüklükleri zaman zaman küçük çakıl boyunu alır (2-3 sm).

Sarı kumlu kalker. – Bahşili'de 20 m, Keskin Sivrisi kuzeyinde ise birkaç metre kalınlıkta olan bu kalkerler, kuvars taneli olup, bol mikro ve makro fosillidir. Sarı renkli arenitler içinde mercek halinde bulunurlar. Fosillerden mercanlar ve algler kopmuş ve kırılmış, Ostrea kavkıları da kısmen kırılmış (fakat yuvarlanmamış) haldedir. Mikrofosillerde fazla aşınma emaresi görülmemiştir.

Lagün kalkeri. — Yahşıhan güneyindeki iki büyük fay zonu arasında yer yer görülür. Kirli krem renkli 2-3 mm kalınlıkta, dalgalı laminalardan oluşmuştur. Gerek tabaka içinde gerekse tabaka yüzeyinde simetirk osilasyon dalgacıklarına (oscillation ripple marks) sık sık raslanır. Bazı laminalar oolit yapılıdır.
Kırmızı rudit, arenit ve lütitler. — İyi yuvarlanmış granit, felsit, bazalt, yeşil tüf, kuvarsit ve radyolarit çört (bilhassa mebzul) çakılları genellikle 2-5 sm, bazan 10 sm, çapında olup, kırmızı arenitli bir matriks ve kalsitli kil ile bağlanmıştır. Bu tabakalar arenitlerle ve jips yumruları ihtiva eden kırmızı lütitlerle aratabakalıdır.

Jips mercekleri. – Yahşıhan güneybatısında ve Hodar doğusunda alacalı ruditler, arenitler ve lütitlerle arakatgılı olarak gelişen beyaz renkli, yer yer kırmızı lütitlerden dolayı pembeye boyanmış jipsler görünür. Yanal olarak incelip kalınlaşan bu mercekler devamlı değildir.

Koyu gri-yeşil lütitler. — Yalnız Bahşili güneyinde gelişmiş görülen bu litoloji, ince jips laminaları ihtiva eder, en hafif meyilli arazide bile heyelanlar meydana getirmektedir.

Fosiller

Bahşili köyündeki denizel kumlu kalkerlerden alman numunelerde B. Sözeri (M.T.A. Rap. No. B.S. 72/1) :

> Nummulites sp. Discocyclina sp. Operculina sp. Orbitolites sp. Assilina sp.

tayin ederek Lütesyen yaşını vermiştir. Evvelce bu bölgede çalışan Erol (1954) bu kalkerlerde

Nummulites incrassatus DE LA HARPE

elde edildiğini ve Lütesyen-Priabonien yaşının verildiğini yazmaktadır.

Keskin Sivrisi kuzeyindeki kumlu kalker merceğinde, bol miktarda büyük Ostrea kavkıları yanında, B. Sözeri (op. cit.) :

> Orbitolites sp. Opertorbitolites sp. Goesella sp. Peneroplidae

262

Rotalidae Miliolidae Valvulinidae

tayin ederek Lütesyen yaşını vermiştir.

Yaş ve korelasyon

Alt kısmı Üst Lütesyen-Priaboniyen olan Bahşili formasyonunum kırmızı jipsli rudit ve arenitleri, genellikle Orta Anadolu'da «Oligosen Jipsli Serisi» adıyla tanınan formasyonla korele edilebilir (Baykal, 1943). Şerefli Koçhisar bölgesinde ise bu formasyon «Mezgit formasyonu» olarak tanınmaktadır (Rigo ve Cortesini, 1960). Erol (1969, s. 15)i bu formasyonu «Eski Jipsli Seri» olarak isimlendirmiştir (Çizelge I).

Yorum

Bahşili formasyonu, sığ denizel sedimantasyon şartlarından karasal sedimentasyona geçişi temsil etmektedir. Arenitlerde bulunan: çapraz tabakalanma sığ akıntıların işaretidir. Osilasyon dalgacıkları gösteren lagün kalkeri, kuruma çatlaklarını havi lutitler zaman zaman su çanaklarının sığlaştığını, hattâ kuruduğunu göstermektedir. Diğer taraftan ilk safhalarda derinliğini koruyan kuytu deniz köşelerinde bazı: kalker sedimentasyonu oluşmuş ise de, sonraları bu durum da ortadan kalkmış, ortada sadece jips çökelen havzalar ile rudit ve arenitle dolan basenler kalmıştır. Bu basenlere zaman zaman türbid akıntılar (seller) da gelmiştir.

Bu kayaç ünitelerinin genellikle merceksel yapıda olması, çökelme ortamlarının devamlı olarak değişmesi, tektonik bir faaliyete, yerkabuğunun devamlı bir hareketine işaret etmektedir. Birkaç yüz metreye varan bir kalınlığın çökelmesi boyunca ortamın sığ deniz-lagün karakterini muhafaza etmesi, bölgenin o esnada yavaş yavaş çökmesi ile izah edilmelidir. Buna mukabil, çok iyi yuvarlanmış çakılların mevcudiyeti ve bu gibi rudit tabakalarının bolluğu, karaların iç kısmındaki dağların yükselmekte olduğunu, satıh meylinin dikliğini muhafaza ettiğini ve erozyonun şiddetli olduğunu belirtmektedir.

Teoman Norman

Neojen ve Kuvaterner

Genellikle Alp paroksizmasından sonra meydana gelen erozyon çukurlarını dolduran ve erozyon düzlüklerini kapsayan, yatay veya yataya yakın tabakalar halinde bulunan Neojen, çok iyi yuvarlanmış çakıllar (asit ve bazik magmatik kayalar, koyu ve açık renkli Kretase kalkerleri, algli beyaz Paleosen kalkeri, krem renkli Lütesyen kalkeri, radyolaritler, silisifiye olmuş tüf, iyi çimentolanmış kahverenkli arenit) ve kaba arenitlerden oluşur. Kırıkkaleye doğru derinleşen bir baseni kenarlarından dolduran akarsu depoları halindedir.

Kuvarterner ise, Kızılırmak kıyılarındaki vadi yamaçlarında, yer yer korunmuş olan eski alüvyon taraçaları halinde, bol miktarda çapraz tabakalanma gösteren rudit ve kaba arenitlerden müteşekkildir (Örneğin : Yahşıhan güneyi).

İSTİFLENMEDE BAZI ÖZELLİKLER Arenitler

Batı istiflenmesini teşkil eden formasyonların arenit bölümleri çoğunlukla türbid akıntılarla şimdiki yerlerine gelmiş bulunmaktadır. Bu arenitlerin kompozisyonlarının, aşınmakta olan karasal kısımların litolojik yapısıyla yakından ilişkili olacakları doğaldır. En alttaki Irmak formasyonundan itibaren yukarı doğru, stratigrafık istifin muhtelif seviyelerinden alınan arenit nümunelerinin modal analizlerinin sonucu incelenmiştir (Şekil 24). Buna göre, Irmak, Ilıcapınar ve Bölükdağ formasyonlarında bazik kayaçlara ait kırıntılar hakim (ortalama % 63), asit kayaçlara ait kırıntılar tali (% 13) durumdadır. Dizilitaslar formasyonunun alt seviyelerinden (Paleosen başlangıcı) itibaren durum süratle tersine dönmekte, bazik kırıntılar tali vaziyete geçerken (ortalama % 16) asit kırıntıları hakim (ortalama % 55) olmaktadır. Asit kayaç kırıntılarının artışının, Karaca Ali plütonunun yerleşmesiyle ilgili olan asit ve intermedier volkanizmadan ileri geldiği düşünülmektedir. Üst Kretase sonlarına kadar bazik kayaçlı formasyonların aşındığı, bundan sonra karalarda asit ve intermedier volkanik kayaçların ortaya çıktığı anlaşılmaktadır.

Nitekim Mestrihtiyen-Paleosen geçişinde buna benzer bir gelişme Haymana bölgesinde de görülmüştür (Yüksel ,1970). Bu bölgedeki Üst Kretase yaşlı formasyonların (Seyran, Kocatepe, Yılanlıhisar, Haymana) killi kısımlarında montmorillonit ve illit hakim durumda iken, daha üstteki Üst Mestrihtiyen-Paleosen yaşlı formasyonlardaki (Kavak, Çaldağ, Kadıköy ve Gedik) killi kısımlarda klorit ve klorit-illit mineralleri hakim duruma geçmektedir. Araştırmacıya göre bu son mineraller biotitli bir volkanizmanın mahsulüdür (Yüksel, 1970).

Şekil 24 — Batı istiflenmesinin muhtelif seviyelerinden alınan arenitlerin petrografik kompozisyonları. Düşey çizgiler ortalama yüzde değerlerini göstermektedir. Orta sütundaki rakkamlar lokasyon numaralarıdır. Stratigrafi sütunu ölçekli değildir.

Ruditler

Batı istiflenmesinin çeşitli formasyonlarında yer alan ruditlerin elemanları da, aşınmakta olan yerkabuğunun litolojik bileşimi hakkında bir fikir vermektedir. Irmak formasyonunda bu elemanların hemen hemen tamamen spilit, diabaz, serpantin, radyolarit ve Mesozoik kalker çakıllarından ibaret oldukları görülmektedir (Şekil 25). Üst formasyonlara doğru bu grup elemanlar azalmakta, yerlerini andezit trakiandezit, kuvarsit ve arenit çakıllarından müteşekkil başka bir gruba bırakmaktadır. Ancak Keçili formasyonunun üst yarısından itibaren üçüncü bir grubun elemanları olan granit, granodiorit ve siyenit çakılları ortaya çıkmakta; fakat birinci grup elemanlarında da nisbi bir artma müşahade edilmektedir. Bahşili formasyonunda her üç grubun elemanları hemen hemen eşit oranlarda bulunmaktadır.

Bu değişmelerden, önceleri bazik kayaç elemanlı bir kütlenin aşındığı (bu aşınmanın bir kısmı veya hepsi sualtı kaymaları şeklinde olabilir), daha sonra volkanik bir «örtü» ile metamorfik-metasomatik bir «kabuk»un karasal (subaerial) etkenlerle aşındığı, erozyonun en sonunda daha derinlere nüfuz ederek plütonu ortaya çıkararak aşındırdığı anlaşılmaktadır. Nitekim, Doğu istiflenmesinde de Yahşıhan formasyonunu kesen erozyon düzlemi üzerine gelen Karagüney ruditleri, en çok, volkanik «örtü» ve metamorfik-metasomatik «kabuk» çakıllarından oluşmuş elemanları havidir. Plütona ait çakıllar daha yukarda, ancak Bahşili formasyonunda, görülmeğe başlanır.

Yerkabuğunun derin kısımlarında soğuduğu bilinen iri billurlu plütonun karasal etkenlerle aşınmağa uğraması ise devamlı bir yükselmeyi gerektirmektedir. Bunun sonucunda, plütonu çevreleyen Yahşıhan formasyonunun da yükselmesi ve yeniden aşınması beklenir. Keçili ve Bahşili formasyonlarındaki bazik kayaç (ve diğer ilgili) çakıllarının artışlarını bu açıklamaya bağlamak mümkündür.

Kalınlıklar

Çalışma sahası dahilinde birbiriyle korele edilebilen iki değişik stratigrafi istiflenmesinin oluştuğu ortaya çıkmaktadır. Batı istiflenmesi daha sürekli bir sedimentasyonu yansıtmakta, muhtemelen çökelme havzasının daha derin bir bölümünü belirtmektedir. Gerçekten, Batı istiflenmesinde tabanı teşkil eden Irmak formasyonunun üstüne gelen formasyonların ortalama toplam kalınlığı (Keçili formasyonunun üstüne kadar) 3200 m'yi bulmaktadır. Bunun 1000 m kadarı Hacıbalı ve Keçili formasyonlarına aittir. Daha kuzeyde Kalecik'te ise sadece Keçili formasyonunun kalınlığı 2000 m'yi geçer (Reckamp, 1959). Buna mukabil Doğu istiflenmesinde,

FORMASYONLAR %	0 Carlos (1991-1991-1991-1991-1991-1991-1991-199	50		4	100
BAHSILİ	a shekara a Manazar		* *	+	
KEÇİLİ		gine in statu Na gine a diata San ang terrat		+	+
HACIBALI		a in la The second			
DİZİLİTAŞLAR					
BÖLÜKDAĞ		18 - 1 2 - 2 2	1		
ILICAPINAR					
IRMAK					1

Granit, granodiorit, siyenit çakılları

Andezit, trakiandezit, kuvarsit, arenit çakılları

÷

Spilit, diabaz, serpantin, radyolarit, Mesozoik kelker çakılları

Şekil 25 — Batı istiflenmesindeki formasyonlarda bulunan ruditlerin eleman kompozisyonu. Oranlar yaklaşık olarak alınmıştır.

Yahşıhan formasyonunun üzerine gelen Karagüney, Mahmutlar ve Bulanıkdere formasyonlarının toplam ortalama kalınlığı ancak 700 m civarındadır. Doğu istiflenmesinde görülen neritik ortam formasyonları da, doğu ve güneydoğu doğrultusunda havzanın sığlaştığını belirtmektedir.

Teoman Norman

Ortamlar

Batı istiflenmesinde en altta görülen «derin» deniz türbiditlerinin üste doğru yerlerini ruditlere bıraktığı, nihayet Keçili formasyonu zamanı sonlarına doğru neritik Lütesyen yaşlı kalkerlerin oluştuğu görülmektedir. Gittikçe sığlaşan bu ortamda Bahşili formasyonunun lagüner ve karasal kayaçları en üst kısmı teşkil etmektedir. Bu sırada Doğu istiflenmesinde ise, Yahşıhan formasyonunu ve Karaca Ali plütonunu kesen bir aşınma düzlemi (Karasal ortam) üzerine önce transgresif ruditlerin yerleştiği, denizin biraz derinleşerek Mahmutlar ve Bulanıkdere formasyonlarının çökeldiği, ancak tekrar sığlaşma sonucunda Bahşili formasyonunun neritik, lagüner ve karasal tortullarının geliştiği görülmektedir (Şekil 26). Buradaki transgresyon safhasının Batı istiflenmesinde görülmeyişini, batıdaki havzanın daha derin ve karadan uzak bulunmasıyla açıklamak mümkündür.

SONUÇ

Paleocoğrafya ve jeolojik tarihçe

Üst Kretase sonlarına doğru (75-80 milyon yıl önce) çalışma sahamızda Irmak formasyonunun derin ve hareketli bir basenin tabanını teşkil ettiği görülmektedir (Şekil 27 a) Kuzeybatısı çökmekte, güneydoğu yamaçları da dikleşmekte olan bu basene, sualtı heyelanları ve kaymalar ile, önceleri başka yerlerde birikmiş olan formasyonlar yerleşmekte, türbiditler de arenitli malzemeyi basene yığmaktadır. Sakin ve derin bir denizde çökelmiş olması gereken pelajik sedimentler (Mikrit kalker, radyoleryalı çört) bazan büyük bloklar halinde, bazan da ufalanmış breşlerin (monojenlk rudit) oluşturduğu olistostromlar halinde derinlere akmaktadır. Bu sırada karaların ve denizlerin dağılışını belirten bir delili sahamızda bulmak güçtür; ancak güneydoğuda su üstüne çıkmış bulunan kısımların olması gerekir. Kuzeydoğudan güneybatıya yönelmiş akıntı izleri, muhtemelen basenin uzun ekseninin bu doğrultuda olduğunu göstermektedir.

Batı tarafta Irmak formasyonunun son karmaşık üniteleri yerleşirken, doğu tarafta nisbeten daha sakin bir durum var gibi görünmektedir: Yahşıhan formasyonu spilit, diabaz lav, aglomera ve tüfler, yer yer arenit, lütit, hattâ biostromal kalkerle arakatgılı olarak

TEOMAN NORMAN 1973 Ve ALP PAROKSIZMI PLUTONU nun CD blokunun yukselmesi KARACAALI OLAYLAR yerteşmesi Nikseime karasal çökeller erozyon cokme ANKARA YAHŞIHAN BÖLGESİNİN JEOKRONOLOJİ İLİŞKİLERİ 3 3 3 三公子 C C ٩ 0 VAHSHAN Bahşili-Mahmutlar (Dogu istifienmesi) 0 0 -GÜNEYDOĞU 0 O C 2222 ¢ C 5 2 5 2 6 5 O 5 2 0 5 2 C 0 2 1 5 O Yahşhan cwarı BULANIKDERE 5 ORTA 1 > C 11 2 BOLUKDAG 5 > 5 ITASLAR -IRMAK C 5 5 > 2 Q BAHSIL DIZILI 5 0 ILICAPINAR C NEOJEŃ 5 5 Bedesten - Hacibali - Keçili 5 (Boti istiflenmesi) C KUZEYBATI > 2 ECILI 0 2 5 2022 5 0 00 EOKRONDLOU SURE 9 9 9 9 9 5 5 12 S E 5 -1 YAS 26-45 65 20 36 -82 88 57 100 38 54 2 -**JESTRIHTIVEN** SENOMANIYEN STRATIGRAFI PRIABONIVEN KAMPANIYEN OLIGOSEN SANTONIYEN KONIASIYEN TURONIYEN PRESIVEN PALEOSEN PLIOSEN UTESIYEN MIOSEN YASI KUNATERNER

Yahşıhan Bölgesi Stratigrafisi

Sekil 26 - Jeokronlojik yaşlar milyon yıl olarak verilmiştir.

Teoman Norman

gelişmektedir. Bu sırada Irmak ve Yahşıhan formasyonları arasındaki uzaklık şimdiki uzaklığın muhtemelen birkaç katı (50-60 km?) olmalıdır (kıvrım ve bindirmelerin «açılması» suretiyle tahmin edilmiştir).

Mestrihtiyen başlangıcında (70 milyon yıl önce) tektonik hareketlerin, dolayısıyla kayma ve heyelanların azalmağa başladığı, kısmen denizaltı volkanik orijinli bazik volkanik malzemeli türbiditlerin ise baseni doldurmağa devam ettikleri görülmektedir (Ilıcapınar formasyonu). Türbiditler genellikle KKD'dan GGB yönüne akmakta. muhtemelen basenin uzun ekseninin dalımını izlemektedir. Bu sırada yer alan sualtı heyelanları ve tabaka kaymalarının ise doğu ve güneydoğudan geldiği, yani GD blokunun yükseldiği anlaşılmaktadır (Sekil 27b). Bu durum Karaca Ali plütonunun yükselmeğe başladığını belirtebilir. Çünki, Mestrihtiyen sonlarına doğru çökelen Bölükdağ türbiditlerinde, bazik volkanik kırıntıların yanısıra, daha asitli volkanik kayac kırıntıları da görülmeğe başlanmıştır. Bunlar, muhtemelen, sonradan Karaca Ali plütonunu meydana getirecek olan magmanın öncüleri olan dayk, sill ve erüptif materyelden gelmektedir. Neritik bölgelerde veya volkanik adaların kıyılarında rudistler kısa ömürlü resifler meydana getirmektedir.

Paleosen başlangıcında (65 milyon önce) batı ve doğu bölgelerdeki jeolojik gelişmenin belirgin derecede farklılaştığı söylenebilir. Batıda türbiditler yeşil renkli lütitlerle arakatgılı olarak çökelmekte, zaman zaman buraya olistostromlar da dahil olmaktadır. Bu olistostromların içinde Paleosen fosilli kalker klastlarının da olması, doğu blokunun yükselmesi esnasında, henüz yeni teşekkül etmiş ilk Paleosen tabakalarının da kaymaya ve sualtı erozyonuna uğradıklarına işaret etmektedir (Şekil 27 c). Paleosen esnasında artık Karaca Ali plütonunun tamamen yerleştiği, asit-intermedier kayaçlardan olusmus bir «örtü» ile plütonun cevresini saran metamorfik-metasomatik bir «kabuk zonunun su üzerine yükselerek aşındığı görülmektedir. Dağların yüksek, yamaçların dik ve derelerin kısa mesafeli olduğu bu dönemde, iri volkanik elemanlı ruditler (D2 üvesi), kuvvetli sellerle sürüklenmiş malzemenin, türbid akıntılar halinde basenin derinliklerinde toplanmasıyla oluşmaktadır. Paleosen sonlarına doğru batıda sualtı kayma olayları şiddetini kaybederken, yükselmiş olan doğu blokunun aşınmaya devam ettiği görülmektedir.

E B GD (f) Doğu kısmın hafifçe çökerek basenlesmesi sonucunda, ya-Neoien tay tabakalı karasal Neojen yaslı formasyonlar teşekkül etmektedir. Tamamen dolan basen Alpin (e) paroksizmasına maruz kalmak-Orta tadır. Oligosen Erozyonu takip eden bir çökme (d) sonucunda transgresyonla Eosen denizi doğu blokuna ya-Ipresiyenyılmakta, bu sırada basen dol-Lütesiyen maktadır. Olistostromlar ve türbiditler (c) yerleşirken doğu bloku yükselmesine devam etmekte, plüton Paleosen verini almakta, volkanikler de sedimentasyona katılmaktadır. Basenin doğu kısmı yüksel-(b) mekte, orta kısmı türbiditlerle Mestrihtiyen dolmaktadır. Karaca Ali plütonunun apofizleri belki volkanlar halinde cıkmaktadır. Irmak (ve Yahşıhan) formas-(a) yonu tabanı teşkil etmekte ve muhtemelen iki taraftan gelen Kampaniyen türbid akıntılar eksene ulaşınca GGB yönüne akarak basene cökelmektedir.

Eosen başlangıcından (İpresiyen, 54 milyon yıl önce) itibaren doğu kısımda bir çökme ve bununla ilgili bir transgresyon başlamaktadır (Karagüney formasyonu). Batı kısımlarda (Şekil 27 d), basenin daha derin yerlerinde ise, lütit sedimentasyonu esas olmakla beraber (Bulanıkdere formasyonu), sık sık tekerrür eden volkanik malzemeli türbiditler basenin ortasında toplanarak ayrı bir fasiyes meydana getirmektedir (Hacıbalı formasyonu). Gittikçe dolan basen sığlaşmakta, karasal orijinli ruditler içinde kömürleşmiş bitki kalıntıları ve nihayet Karaca Ali plütonuna ait çakıllar görülmektedir (Keçili formasyonu). Neritik bölgelerde zaman zaman kumlu kalkerlerin de oluştuğu anlaşılmaktadır (Mahmutlar formasyonu). Eosen sonlarına doğru basen artık iyice dolarak sığlaşmakta, yer yer teşekkül eden bazı kavkılı kalker bankları yerlerini lagüner (kalker, jips) ve karasal rudit ve arenitlere terketmektedir. Bu sırada teşekkül eden kırmızı renkli kayaçlarda (Bahşili formasyonu), bol miktarda iyi yuvarlanmış çakılların bulunması, dağların halâ yükselmekte devam ettiğine bir işaret olabilir (Yaklaşık olarak 40 milyon yıl önce).

Bahşili köyü (37/06) civarının bu olaylar sırasında özel bir durumu dikkati çekmektedir. Bu bölge devamlı olarak diğer taraflara nazaran daha yüksek kalmak temayülündedir. Örneğin, Paleosen'deki yükselme sırasında Yahşıhan formasyonu en ziyade burada aşınmıştır. Eosen başlangıcındaki hafif çökme dolayısıyla biriken Karagüney formasyonunu, İpresyen sonundaki bir yükselmede yine kısmen aşınmış, hattâ bu defa erozyon plütona kadar işlemiştir. Lütesyen başlarında neritik ve resifal bir ortamda kalker gelişmiş; fakat Lütesyen sonlarında nisbi bir yükselme ile bu bölgeye kaba klastik malzemeli ruditler («Sarıkayalar») doluşmuştur. Bütün bunlar, Bahşili bölgesinin bir blokun (Kırıkkale masifi) kenarında yer alması şeklinde izah edilebilir.

Oligosen'de (30-35 milyon yıl önce) şiddetli bir paroksizmanın (Alp paroksizması) bütün çökelme havzasını sıkıştırdığı, doğuya doğru yatık kıvrımlar ve bindirmeler meydana getirdiği görülmektedir (Şekil 27 e).

Yükselme ve büyük çapta aşınma safhalarından sonra, muhtemelen Miosen ortalarında (15-20 milyon yıl önce) bölgenin doğu tarafında bir karasal çökelme havzasının oluştuğunu görmekteyiz (Şekil 27 f). Göl kalkeri, rudit, arenit ve lütitlerin yatay tabakalar halinde çökeldiği bu havzaya, zaman zaman bazalt pillov lavlar ve andezitik tüf malzemesi de dahil olmaktadır. Kuvaterner'de bölge tekrar yükselmeğe başlamıştır. Akarsu sekilerinden görüldüğü üzere, kademeler halindeki yükselme halen de devam etmektedir.

BİBLİYOGRAFYA

- Abbate, E., Bortolotti, V. ve Passerini, P., 1970 Olistostromes and olistoliths: Sedimentary Geology, 4, s. 521-558.
- Arni, P., 1942, Anadolu ofiolitlerinin yaşlarına mütedair malümat; M.T.A. Enstitüsü Dergisi, 3/28, s. 472-488.
- Ayan, M. 1959, Contribution a l'étude petrographique de la région située au nord- est de Kaman (Turquie). (Tez, Nancy): M.T.A. Enstitüsü Yayınları no. 115.
- Bailey, E.B. ve Mc Sallien, W.C. 1950, Ankara Melanjı ve Anadolu Şaryajı M.T.A. Enstitüsü Dergisi, 40, s. 12-22.
- Baykal, F. 1943, Kırıkkale-Kalecik ve Keskin-Balâ Mıntıkalarındaki Jeolojik Etüdler. M.T.A. Enstitüsü Derleme Raporu, no. 1448.
- Blumenthal, M., 1948, Bolu civarı ile Aşağı Kızılırmak mecrası arasındaki Kuzey Anadolu silsilelerinin jeolojisi: M.T.A. yayınları, Seri B, no. 13 Ankara.
- Boccaletti, M. ve Bortolotti, V. Sağrı, M. 1966, Richerche sulle ofioliti delte Catene- Alpine: 1 – Osservazioni sull'Ankara Mélange nella zona di Ankara.. Boll. Soc. Geol. It., 85, s. 485-508.
- Bouma, A.H., ve Brouwer, A. 1964, Turbidites Elsevier, Amsterdam, 254 s.
- Brinkmann, R., 1968, Einige geologische Leitlinien von Anatolien: Geol, et Palaont., 2, s. 111-119, Marburg.
- Buchardt, W.S., 1958, Orta Anadolu'da 1:100:000 ölçekli Jeolojik Harita çalışmaları hakkında rapor: (Çeviren: Z. Bengi). M.T.A. Derleme Raporu, no. 2675.
- Chaput, E., 1936, Türkiye'de Jeolojik ve Jeomorfolojik tetkik seyahatları (Çeviren: A. Tanoğlu, 1947): İstanbul Üniversitesi Yayınlarından, no. 324.
- Dobkins, J.E., ve Folk, R.L. 1970, Shape development on Tahiti-Nui: Jour. Sed. Pet., 40, s. 1167-1203.
- Dott, Jr. R.H., 1963, Dynamics of subaquaeous gravity-depositional processes: Bull. Amer. Assoc. Petrol. Geol., 47, 104-128.
- Dzulynski, S., ve Walton E.K 1965, Sedimentary features of flysch and greywackes: Developments in sedimentology, no. 7, Elsevier, Amsterdam, 274 s.
- Egeran, E.N. ve Lahn, E. 1948, Türkiye Jeolojisi Ankara, 190 s.
- Egeran, E.N. ve Lahn, E. 1951, Kuzey ve Orta Anadolu'nun tektonik durumu hakkında not: M.T.A. Enstitüsü Dergisi, no. 41, s. 23-27.

- Erk, A.S., 1957, Ankara civarı petrol ihtimalleri: M.TA. Enstitüsü Raporu, no. 2608 (Yayınlanmamış).
- Erol, O., 1954, Ankara civarının jeolojisi hakkında rapor, M.T.A. Enstitüsü Raporu, no. 2491.
 - 1955, Kalecik-Hasayaz-Termeçay civarı jeolojisi hakkında rapor: M.T.A. Derleme Raporu, no. 2310.
- ——— 1956, Ankara güneydoğusundaki Elma Dağı ve çevresinin jeolojisi ve jeomorfolojisi üzerine bir araştırma:

——— 1958, 41/3, 41/4, 42/3, 42/4, 43/3 numaralı paftalar sahasının jeolojik revizyon ve korelasyonu hakkında rapor: M.T.A. Derleme Raporu, no.

——— 1961, Ankara bölgesinin tektonik gelişmesi: T.J.K. Bülteni, 7, s. 57-85.

—— 1938, Ankara çevresinde Paleozoik arazisinin bölümleri ve Paleozoik-Mesozoik sınırı hakkında: TJ.K. Bülteni, 9, s. 1-20.

——— 1969, Tuzgölü havzasının jeoloji ve jeomorfolojisi: T.B.T.A.K. Raporu (Yayınlanmamıştır),

- Fiske, R.S. ve Matsuda, T., 1934, Submarine equivalents of ash flows in Tokiwa Formation, Japan: Amer. Jour. Sci., 232, s. 76-106.
- Folk, R.L., 1968, Petrology of Sedimentary rocks: Hemphill's. Austin. Texas. 170 s.
- Gansser, A., 1959, Ausseralpine Ophioloth probleme: Ecl. Geol. Helv., 52, s. 659-680.
- Gökçen, S.L., 1971, Keşan bölgesi türbiditlerinde siklik sedimentasyon: Hacettepe Fen ve Müh. Bil. Derg., 1, s. 26-40.
- Hendry, H.E., 1972, Breccias deposits by mass flow in the Breccia Nappe of the French pre-Alps: Sedimentology, 18, s- 227-292.
- Ketin, İ., 1954, Yozgat Bölgesinin jeolojik lövesi hakkında memuar; M.T.A. Enstitüsü Derleme Rapor, no. 2141.
 - —— 1955, Yozgat Bölgesinin Jeolojisi ve Orta Anadolu Masifinin Tektonik Durumu: T.J.K. Bülteni, 6, s. 1-28.
 - ——— 1959, Türkiye'nin orojenik gelişmesi: M.T.A. Enstitüsü Dergisi, 53, s. 78-86.
- ———— 1961, Türkiye'de magmatik faaliyet; TJ.K. Bülteni, 7, s. 1–15.
- ——— 1963, Türkiye Jeoloji Haritası (1:500.000), Kayseri izahnamesi: M.T.A. Yayınlarından, Ankara.
- ——— 1966, Anadolu'nun tektonik birlikleri-: MT.A. Enstitüsü Dergisi, 66,

274

s. 20-34.

- Kuenen, PH.H., 1967, Emplacement of flysch-type sand beds: Sedimentology, 9, s. 203-243.
- Lahn, E., 1949, Orta Anadolu'nun Jeolojisi Hakkında: TJ.K. Bülteni, 2, 90-107.
- Lokman, K. ve Lahn, E. 1946, Haymana bölgesi jeolojisi: M.T.A. Enstitüsü Dergisi, 2/36, s. 292-299.
- Maucher, A., 1937, Ankara vilayetinin Keskin kazasında Hüseyinbeyobası mevkiinde molibdenit ve povelit zuhuru: M.T.A. Derleme Rap. no. 635 (Yayınlanmamıştır).
- Middleton, G.V., 1966, Experiments on density and turbidity currents, I. Motion of the head: Canadian Jour. Earth Sci., 3, s. 523-546.
- Mitchell, A.H.G. and Reading, H.G. 1969, Continental margins, geosynclines and ocean floor spreading: Jour. Geol., 77, s. 629-646.
- Mitchell, A.H.G., 1970, Fades of an early Miocene volcanic arc, Malekula Island, New Hebridies: Sedimentology, 14, s. 201-243.
- Natland, M.L., ve Kuenen, PH.H. 1951, Sedimentary history of the Ventura Basin California, and the action of turbidity currents. Soc. Econ. Paleon. Min. Spec. Publ. no. 2, s, 76-107.
- Norman, T., 1972, Ankara doğusunda Yahşıhan bölgesinde Üst Kretase -Alt Tersiyer yaşlı Arazinin Jeolojisi (Tez): Orta Doğu Teknik Üniversitesi Jeoloji Müh. Bl. Ankara.
- Pettijohn, FJ., 1957(Sedimentary Rocks: Harper, New York, 689 s.
- Pettijohn, F.J., Potter, P.E. ve Siever, R. 1972, Sand and Sandstone: Springer-Verlag, Berlin, 600 s.
- Reckamp, J.U., 1959, Preliminary report on the petroleum possibilities of the Çankırı licenses: AR/TGO/II/471-472 Petrol Dairesi Teknik Arşivi.
- Reckamp, J.U., Özbey, S. 1960, Supplementary Report on the Petroleum possibilities of the Çankırı Area: AR/TGO/II/471-472 Petrol Dairesi Teknik Arşivi.
- Rich, J.L., 1951, Three critical environments of deposition and criteria for recognition of rocks deposited in each of them: Geol. Soc. Amer. Bull., 62, s. 1-20.
- Rigo de Righi, M. ve Cortesini, A. 1960, Regional studies. Central Anatolia Basin. Progress Report. 1 – Stratigraphy, 2 – Structure. Petrol Dairesi T.A. Turkish Gulf Oil Co. 11/11-12 (Yayınlanmamıştır).

- Rigo de Righi, M. ve Cortesini, A. 1964, Gravity tectonics in foothills structure belt of SE Turkey: A.A.P.G., 48, s. 1911-1937.
- Schmidt, G.C., 1960, Geological evaluation of the licences 360-363 and 365-367, District II: Petrol Dairesi, Ankara (Yayınlanmamıştır).
- Stchepinsky, V., 1942, Bursa ile Tercan arasındaki bölgenin mukayeseli stratigrafisi M.T.A., Enstitüsü Dergisi. 2/27, s. 290-321.
- Walker, R.G., 1967, Turbidite sedimentary structures and their relationship to proximal and distal depositional environments: Jour. Sed. Pet., 37, s. 25-43.

— 1970, Review of the geometry and facies organisation of turbidites and turbidite-bearing basins: Geol Assoc. Canada, Spec, paper no. 7, s. 219-251.

- Yücel, T., 1953, Kızılırmak-Yeşilırmak arasında kalan bölgenin jeolojisi hakkında rapor; M.T.A. Derleme Raporu, no. 2001.
 - —— 1954, Deveci dağları-Kalecik arasında Kuzey Anadolu dağlan ile Iç Anadolu intikal alanının jeolojisine dair rapor: M.T.A. Derleme raporu, no. 2295.
- Yüksel, S., 1970, Etude Géologique de la Region D'Haymana (Turquie Centrale). Thèse. Faculté des Sciences de L'université de Nancy, France.

SYSTEMATIC STUDY OF NEW SPECIES OF THE GENERA FABULARIA AND KATHINA FROM PALEOCENE

(Paleosen'de Fabularia ve Kathina'ya ait yeni türlerin etüdü)

Ercüment Sirel

Mineral Research and Exploration Institute of Turkey, Ankara

Öz. – Kars Bölgesi (NE Türkiye) Paleosen'inde bulunan Fabularia ve Kathina'nın yeni türleri ve bunlarla beraber bulunan Foraminiferlerin sistematik etüdleri verilmiştir.

Abstract. – Systematic study of new species of the genera Fabularia and Kathina with associated Foraminifera in Paleocene of Kars Region (NE TURKEY), are given.

INTRODUCTION

In the samples collected by geologist M. Şenalp in 1967 from the Kars Region (Fig. 1), yielded new species of the genera Fabularia (Family Miliolidae) and Kathina (Family Rotaliidae) and other rare species of foraminifers.

The specimens are deposited at the Paleontological section of the Mineral Research and Exploration Institute of Turkey, Ankara

SYSTEMATIC DESCRIPTION

Family ALVEOLINIDAE Ehrenberg 1839

Genus Alveolina d'Orbigny 1826

Alveolina globula Hottinger 1960

(PI. I, Fig. 1 - 2)

1960. **A. globula** Hottinger, (Hott., p. 81, text Fig. 38 a - c; pl. 3, Fig. 11) **Description.** – In the thin sections only megalospheric forms are observed.

Test is subspheric with an axial diameter of 3.55 mm. It is formed of 8 whorls. Equatorial diameter is 3 38 mm. Indice of prolongation (axial diameter/equatorial diameter) is 1.05.

Internal characters : Proloculum is ovate and rather big with a dimension of 336x413 μ . The following 3 chambers are very compressed and have very thin basal layer. The three whorls which follow the first three ones, increase suddenly in width and this corresponds to the flosculinisation period of the test. In the whorls, after flosculinisation period, the width of the coiling becomes slightly narrower and later on stays constant. Chamberlets in the first and flosculinised whorls are very small with a generally rounded or slightly compressed cross-section. In the last whorls, the chamberlets are irregular in shape and greater in size; but contrary to the first whorls, their height is always greater than their width.

Stratigraphic level. – Upper Paleocene.

Locality. - Pernavut Village (South of Kars).

Alveolina aramaea Hottinger 1960

(PI. I, Fig. 4)

1960. A. aramamea Hott. (Hottinger, p. 72, Text Fig. 36; pl. 3, Fig. 4-7) Description. — Only megalospheric forms were observed in thin sections.

The shape of the test is spherical or subspherical. Maximum

diameter (equatorial) is 4.35 mm. In a sample with 8 whorls, equatorial diameter is 4.25 mm and axial diameter is 4.06 mm. Indice of prolongation is between 0.9 -1

Internal characters : The proloculum ise ovate and very big. The maximum diameter of megalosphere is about 513x 635 μ . In the first five whorls, the spire interval is large and the basal layer of the latest whorls is thicker. The following five whorls, the spire interval, becomes narrower and stays constant till the last whorl. The chanv berlets are small and are arranged closely in the first whorl. Their width is greater than their height. In the latest whorls, their height becomes greater than their width.

Stratigraphic. - Upper Paleocene.

Locality. - Pernavut Village (South of Kars).

Subgenus Glomalveolina Reichel 1937

Alveolina (Glomalveolina) minutula Reichel & Renz 1936

(PI. I, Fig. 3)

1936. **A. minutula** Reich. & Renz (Reich. & Renz 1936, p. 138; pl. 12, Fig. 2).

1960. A. **(Giomalveolina) minutula** Reich. & Renz, (Hottinger, P. 62, Text Fig. 29; Pl. 1, Fig. 31)

Description. – Test is very small and spherical. For a 1.65 mm; diameter 11 whorls are counted. Indice of prolongation is 1.

Internal characters : Proloculum is very small and spherical with' a diameter of about 32 μ The first and second whorls which follow the proloculum, show a milioline stage. The following whorls are coiled normally. The species can be distinguished very easily from the other species of **Glomalveolina** by its thiny and delicate test. The basal layer is very thin and its thickness is always less than the diameter of the chamberlets. Chamberlets are spaced and big. Their cross-sections are generally rounded.

Chamberlets of the last whorls show various shapes and their height is slightly more than their width.

Stratigraphic level. - Upper Paleocene.

Locality. – Pernavut Village, (South of Kars).

Family MILIOLIDAE d'Orbigny 1839

Genus Fabularia Defrance 1820

Fabularia alpani n. sp.

(PI. II, Fig. 1-6)

Derivatio nominis. – The species is dedicated to Dr. Sadrettin Alpan, General Director of the Mineral Research and Exploration Institute of Turkey.

Diagnosis. – Test subspheric, shape of the equatorial and axial sections compressed circle, average length and width in axial section: 2.35 mm and 2.06 mm, average largest and smallest diameter in equatorial section: 2.66 mm and 2.55 mm, proloculum spheric, very large, average diameter 475 μ , rather thick «goulot» (see PI. II, Fig. 6), biloculine arranged chambers divided into chamberlets, apertures at the end of the chambers.

Description. – Shape of the test is subspherical. The measurements show that the equatorial and axial section of this species have the form of a slightly compressed circle.

Internal characters : Proloculum is spherical and very large, diameter of megalosphere varies between 350 μ and 650 μ , (average 475 p). This species has a thick «goulot» which can be observed in some well oriented cross-sections. This «goulot» is characteristic for the Alveolina genus. Chamber arrangement is biloculine and it is kept so throughout its development. There are 12 chambers in a diameter of 3,2 mm. With transmitted light chamber wall's exhibit grayish-yellow colour. Their thickness is approximately 42 μ . It reaches 52 μ in 11 th. and in 12 th. whorls. Another dark coloured layer of the test envelopes this gray-ish-yellow coloured layer. This layer has a thickness of 62 μ in the first, 72 μ in the third, 104 μ in the fifth, seventh, nineth and eleventh chambers. The chambers are divided into chamberlets.

280

New Species of Fabularia and Kathina

Chambers' number.	1	2	3	4	5	6	7	8	9	10	11	12
Number of chamberlets	2	5	8	11	12	13	17	17	19	19	21	21

Table I (Distribution of chamberlets in each chamber).

The shape of the cross-sections of the chamberlets is low elliptical. Their height is more than their width. In the first chamber, the height of chamberlets is four times of their width. Chamberlets increase in size from the center towards the periphery. Apertures are at the end of the chambers (PI. II, Fig. 2, 3, 4,).

Measurements of holotype (In mm):

Greatest diameter 3.2

Smallest diameter _____ 3

Measurements on axial sections (average of 20 samples, in mm) :

	Maximum MinimumAv		erage	
Length	— 2.76	1.72	2.35	
Breadth ———	— 2.48	1.51	2.06	

Measurements on equatorial sections (average of 20 samples, in mm):

	Maximum	MinimumAve	rage
Greatest diameter	— 3.20	2.08	2.66
Smallest diameter	3.00	1.82	2.06

Comparisons and Remarks: Cole (1956, p. 256) gathered under the species Fabularia matleyi (Vaugh.), the species Borelis matleyi Vaugh., Borelis jamaicensis Vaugh. and Borelis jamaicensis var. truncata Vaugh. described by Vaughan (1929, p. 337) and Fabularia vaughani Cole & Ponton described previously by himself and Ponton (Cole & Ponton, 1934). Indeed, those new species and new variety closely resemble each other. In this paper Fabularia alpani n. sp. is compared with Fabularia matleyi (Vaugh.) This species resembles Fabularia matleyi (Vaugh.) with its regular coiling and regular arrangement of chamberlets observed especially in the equatorial sections; but, it is distinguished from it by its coarser texture. Fabularia alpani n. sp. has smaller amount of chamber within a larger diameter, i.e. in an equatorial section of 3x3.2 mm. Fabularia alpani n. sp. has 12 chambers while Fabularia matleyi (Vaugh.) has 15 chambers in an equatorial section of 1.75x 1.64 mm Furthermore chamberlets are more numerous in Fabularia matleyi (Vaugh.) and they differ in shape from those Fabularia alpani n. sp. The chamberlets of Fabularia matlevi (Vaugh.) are circular in cross-section in the first whorl. The height of the chamberiets becomes greater than their width in following whorls (this is not the case for Fabularia alpani n. sp.). Wall of chambers of Fabularia matleyi (Vaugh.) is 3 times thinner than that of Fabularia alparsi n. sp. The new species has a very large proloculum. These two species also differ from each others in their general shape. Fabularia matleyi (Vaugh.) is slightly elongated ovoid in shape, while Fabularia alpani n. sp. is subspherical. The new species occurs in lower stratigraphical levels than Fabularia matleyi (Vaugh.).

Stratigraphic level. - Upper Paleocene.

Locality. - Pernavut village (South of Kars).

Genus Lacazina Munier & Chalmas 1882 Lacazina blumenthali Reichel & Sigal 1969 (Pl. VI, Fig. 1 - 4; Pl. VII, Fig. 1 - 3)

1969 Reichel & Sigal (in Reich., Sigal, Monod, 1969, P. 317, Pl. I, Fig, 1 - 14; Pl. II. Fig. 1 -9)

Description. – Megalospheric form. – It is more frequent than the microspheric form. The test is ovate. Proloculum is rather big and spherical, average diameter is about 425 μ . Chambers, which follows proloculum, are arranged in biloculine shape. In the type description of Lacazina blumenthali Reichel & Sigal had accepted this character as a specific one to distinguish it from Lacazina wichmanni Schlumberger. Biloculine stage in our samples, has 8-9 chambers. The chambers which follow are completely involute. In axial sections, chambers are arranged as ellipsoids encircling each

others. The aperture of these chambers are placed in rounded cavity, trematophores and they alternate on the poles. They have, in their middle, a protuberance of the precedent chamber wall which, Schlumberger mentioned in his paper (1894, p. 296) as a primitive teeth for this trematosphore apertures. Because of these apertures it seems that these chambers are not completely involute. In equatorial sections,proloculum, biloculine stage and concentric chambers can be observed in this order. All chambers are divided into chamberlets which are regular and very closely spaced. The chamber wall is very thin, especially last chamber's wall is not well preserved. Chamber wallbecomes thicker near the apertures.

Measurements. - On axial sections :

	Maximum	Minimum	Average
Axial diameter	— 4 mm	1.9 mm	2.5 mm
Equatorial dima	iter — 3.4 mm	1.6 mm	2.1 mm
Indian of prolon	action varias hat	voor 110 10	c

Indice of prolongation varies between 1.18 - 1.26.

Microspheric form. — It is rather rare. We were able to find only 6 microspheric forms. The test is ovate, the prolocuium can not be observed. The chambers which follow the prolocuium, are coiled in milioline (quinqueloculina?) type. The chambers which follow this milioline (quinqueloculina?) stage are coiled in biloculine pattern and later on they become completely involute. The other characters of the microspheric form are the same of the megalospheric form.

Measurements : (on axial sections).

	Maximum	Minimum	Average	
Axial diameter	— 7.4 m	4.8 mm	6.1mm	
Equatorial diame	ter — 5.2 m	3.8 mm	4.3 mm	
Stratigraphic leve	el. – Upper Pale	ocene		
Locality. – Perna	vut Village, (Sou	th of Kars.).		
Fan	nily PENOROPL.	IDAE Schultze 1	854	
	Genus Saudie	Henson 1945		
Saudia labyrinthica Grimsdale 1952				

(PI. III, Fig. 1 -5)

1952. Saudia labyrinthica Grims. (Grimsdale, 1952, P. 223, PI. 21. Fig. 1 - 4 Pl. 22, Fig. 1 - 2)

Description. – Only microspheric forms were observed. The shape fof the test is biconcave discoid. Diameter is 6.2 - 7 mm. Thickness is 0.759 mm on the periphery and 0.207 mm at the center.

Internal characters : The test is calcareous, microgranular and imperforate. It grows by addition of annular chambers and is composed of three different parts. Subepidermal layer is followed externally by an epidermal layer. The subepidermal layer contains alveols, approximately at the same size. The third and inner layer shows labyrinthic pattern. This labyrinthic pattern is probably the result of a complex of apertures and channel systems. In axial section, the continuity of the annular walls can not be well distinguished in this labyrinthic zone.

Measurements. - (made on axial section, in microns).

Thickness of epidermis _____ 30 - 35

Thickness of subepidermis _____ 40 - 45

Diameter of alveolar cells _____ 10 - 25

Stratigraphic level. – Upper Paleocene.

Locality. – Pernavut Village, (South of Kars).

Family MISCELLANEIDAE Sigal 1952 Genus Miscellanea Pfender 1934 **Miscellanea miscella** (d'Archiac & Haime)

(PI. IV, Fig. 1-7)

1853 Nummulites miscella d'Archiac & Haime (pp. 345, PI. 35,

fig. 4 a - c)

1916 Siderolites miscella (d'Arch. & Haime), Douville, (pp. 38 fig. 1-16)

1926 Siderolites stampi n. sp. Davies, (pp. 278, Pl. 21, fig. 1 -8) 1934 Miscellanea miscella (d'Arch. & Haime), Pfender, (pp. 231,

Pl. 11, fig. 6-7, Pl. 13, fig. 2-4)

284

- 1937 Miscellanea stampi (Davies). Davies & Pinfold, (pp. 43, Pl. 6,- fig. 4, 6, 9)
- 1937 Miscellanea miscella (d'Arch. & Haime), Davies & Pinfold, (pp. 43, Pl. 6, fig. 1 -3, 5, 7, 8)
- 1941 Miscellanea miscella (d'Arch. & Haime), Vaughan & Coler (pp. 32, PI. 5, fig. 1 -2)
- 1954 Miscellanea miscella (d'Arch. & Haime), Smout, (pp. 72)
- 1956 Miscellanea miscella (d'Arch. & Haime), Cole, (pp. 240, p1. 33 fig. 2- 3, 10 -11, Pl. 34, fig. 1 - 3)
- 1962 Miscellanea miscella (d'Aroh. & Haime), Hanzawa, Micropal. (Vol. 18, No. 2, pp. 129-186)
- 1962 Ranikothalia stampi (Davies), Hanzawa, (pp. 160, PI. 5, fig. 15)
- 1970 Miscellanea miscella (d'Arch. & Haime), Kaever, (pp. 96, Pl. 8, fig. 8-10)

Description. — Microspheric forms. They are found rather rare by compared to the megalospheric forms. They are globular and lenticular in shape. They have 7 whorls in a diameter of 8 mm. Their surface shows an irregular reticulate septal filaments and granules. Their test is calcareous hyaline and it resembles to rotalid walls. The coarse pores, which can be seen on the surface, continue inward as tubes. The coiling is involute. In a nearly equatorial section can be observed an irregular coiling and variable spire interval. The septa are double and bifurcate towards the periphery, (PI. IV, Fig. 2). Intraseptal channels are not well visible in our samples. Intercameral foramens are present as a slit at the base of the septum.

Measurements. -

	Maximum	Minimum	Average
Diameter ——	10 mm	6 mm	7.8 mm
Thickness ——	2.24 mm	1.7 mm	1.97 mm
D/T	4.4	3.5	3.9

Proloculum was not obtained.

Megalospheric forms. – Very abundant, more globular than the microspheric forms. Equatorial periphery is subacute. Rather strong test is covered with granules on its surface. These granules are bigger in the center. The test is calcareous hyaline and shows approximately the same characteristics of the rotalid tests. The coarse pores, which can be seen on the surface, continue inward as tubes. Intercameral foramens are present as a slit, of the base of the septum. The septa are double and bifurcate towards periphery. (PI. IV, Fig. 4). The spire interval enlarges slightly and gradually throughout the coiling. The shape of the chambers are irregular, mostly their tops are The shape of the chambers are irregular, mostly their tops are 7-8 chambers in the first, 17-18 chambers in the second whorl. Sometimes prolocul'um is double, and the average diameter is 290 μ .

Dimensions. -

	Maximum	Minimum	Average
Diameter	— 2.82 mm	1.72 mm	2.25 mm
Thickness	— 1.82 mm	1.00 mm	1.32 mm
D/T	— 1.5	1.72	1.6

Discussion. – The foundation of Miscellanea miscella (d'Arch. & Haime) is rather confused. d'Archiac & Haime (1854) in their work on the specimen of a megalospheric form from India, described as Nummulites miscella d'Arch. & Haime. Later, Douville (1916) redescribed this species as Siderolites miscella (d'Arch. & Haime) considering it as a species of the genus Siderolites Davies (1927 pp. 272). During his detailed study in India he named as Siderolites stampi n. sp. a microsperic form he found together with Siderolites miscella (d'Arch. & Haime). He presented it as microspheric companion of Siderolites miscella (d'Arch. & Haime). Pfender (1934, pp. 225) founded Miscellanea miscella (d'Arch. & Haime), which possess some common characteristics with the genera Nummulites, Siderolites, Rotalia, might be accepted as a separate genus.

Davies & Pinfold (1937, pp. 47), basing on their work in India,

studied Miscellanea miscella and Siderolites stampi Davies and renamed Siderolites stampi Davies as Miscellanea stampi (Davies). They claimed that genus Miscellanea and Nummulites are allied and Nummulites nuttali Davies and Miscellanea stampi (Davies) are similar in many ways. Vaughan and Cole (1941, p. 32) Considered Miscellanea miscella and Miscellanea stampi (Davies) as different species.

Smout (1954, p. 71), discussed genus Miscellanea and species Miscellanea miscella. Cole (1956, p. 241) restudied Miscellanea miscella in 1956. Later Hanzawa (1962, p. 129) introduced Ranikothalia stampi (Davies). Kaever (1970) during his work in Afghanistan studied Miscellanea miscella and Miscellanea stampi Davies and considered them as microspherical and megalospherical forms of Miscellanea miscella.

The microspherical form illustrated in plate IV, figs. 1, 2, 6, 7 closely resemble Miscellanea stampi Davies in having irregular coiling, similar external reticulate and granular ornamentation, spire intervals of irregular thickness in every each whorl, whorls of equal number and equal size and in having almost equal diameter-thickness ratio. For the adoption of Kaever seems plausible, despite of these close similarities, we classify our specimen as microspherical form of **Miscellanea miscella** (d'Arch. & Haime).

Stratigraphic level. - Upper Paleocene.

Locality. - Pernavut Village (South of Kars).

Family ROTALIIDAE Ehrenberg 1839

Genus Kathina Smout 1954

Kathina subsphaerica n. sp

(PI. V, Fig. 1 - 5)

Diagnosis. – Test biconvex and calcareous hyaline, very thick, average diameter and thickness 1.23 mm and 1.07 mm, diameter/thickness ratio nearly 1.1; coiling trochospiral, chambers evolute dorsally, coiled in 3 whorls, subrectangular chambers, with a number of 18-19 at the last whorl. Proloculum ovate or spherical, with average of diameter 121 μ .

Description. – The test is unequally biconvex, being deeper ventrally. The equatorial periphery is not acute but well rounded. The value of the diameter/thickness ratio being nearly equal to 1, is an important character for this species. The coiling is trochospiral. The spire is very thick. The test is calcareous hyalme. The chambers are evolute dorsally. There is a great dorsal thickening. Ventral plug is very big and solid, divided by pillars. It has three whorls and there are 18-19 chambers in the last whorl. Subrectangular chambers are separated by the double layered septa. Intraseptal channel can be seen well. The proloculum is ovate or spheric and rarely double, average diameter, 121 μ in the single, 70 μ and 110 μ when it is double.

Measurements of holotype.-

 Diameter
 1.4 mm

 Thickness
 1.1 mm

 D/T
 1.2

Measurements. - (in 22 samples)

	Maximum	Minimum	Average
Diameter —	1.48 mm	0.80 mm	1.23 mm
Thickness —	1.08 mm	0.69 mm	1.07 mm
D/T —	1.3	1.1	1.2

Apical angle is about 160 degrees.

Comparisons and remarks. — It is easily distinguished from all other species of Kathina by subspherical appearance, thick spire and having nearly the same value for diameter and thickness in axial section.

It resembles Kathina selveri Smout in having thick chamber walls and great dorsal thickening. It is distinguished from it by more rounded equatorial periphery, by globular general shape, by having a ventral plug divided by pillars (Kathina selveri Smout has a simple solid ventral pfug.)

Stratigraphic level. - Upper Paleocene.

Locality. – Pernavut Village (South of Kars).

Kathina pernavuti n. sp. (PI. V, Fig. 7)

Derivatio nominis. – Pernavut, a village from Kars region.

Diagnosis. — Shape globular discoidal, average diameter 1.3 mm and thickness 0.69 mm; equatorial periphery arcuate, coiling trochospiral, chambers evolute dorsally, ventral plug thick and solid, proloculum spheric and very small.

Description. — In the thin section, some axial sections of Kathina Smout species exhibit characters different from the other known Kathina species. We have accepted it as a new species of the genus Kathina Smout with the following characters : The test is almost globular discoidal, equatorial periphery is arcuate and its coiling is trochospiral. Test structure is in the typical rotalid manner. Under high power magnification, the wall of the ultimate chamber shows a porous structure. The chambers are evolute dorsally but in spite of a thick ventral plug, the chambers are involute ventrally.

Measurements of holotype. -

Diameter _____ 1.3 mm

Thickness — 0.69 mm

D/T _____1.8

Proloculum is very small and about 15 μ . Apical angle is about 170 degrees.

Comparisons and remarks. – It resembles Kathina delseota Smout in general appearance. But it has a solid ventral plug and its chambers are more arcuate in shape in axial sections. The shape of its ventral pillars is similar to that of Kathina major Smout. The similarity with Kathina major Smout is limited and Kathina pernavuti n. sp. is easily distinguished from Kathina major Smout by general shape and by having the same amount of whorls despite of its smaller size. On the other hand it is distinguished from Kathina subsphaerica n. sp. by having greater amount of whorls for a same diameter and by agreater diameter/ thickness ratio.

Ercüment Sirel

Stratigraphic level. – Upper Paleocene. **Locality.** – Pernavut Village (South of Kars). Kathina selveri Smout 1954

(Pl. V, Fig. 6)

1954 Kathina selveri Smout (Smout, 1954 p. 62, PI. VI, Fig. 11 -13). Description. — The test is unequally biconical. The dorsal side is very low and the ventral side deep conical. Equatorial periphery is acute. The test is calcareous hyaline. The lamination is not well seen in the structure of the test. The coiling is trochospiral. The spire is very thick. The chambers are evolute dorsally and they form a great dorsal thickening. This thickening is noticable and reach 1/3 of the thickness. Ventral plug is solid and single.

Measurements. -

Diameter _____ 1.31 mm

Thickness — 1.10 mm

D/T _____1.1

Apical angle is about 160 degrees. Proloculum is spherical and big, its diameter is about 138 $\mu.$

Stratigraphic level. - Upper Paleocene.

Locality. - Pernavut Village (South of Kars).

Associated Foraminifers

Family ORBITOLINIDAE Martin 1890

Genus Dictyoconus Blanckenhorn 1900

Dictyoconus sp.

(PI. VIII, Fig. 1, 2, 4)

Dictyoconus sp.

(PI. VIII, Fig. 3, 5, 6)

Stratigraphic level. – Upper Paleocene. **Locality.** – Pernavut Village, (South of Kars).

290

New Species of Fabularia and Kathina

Family ROTALIIDAE Ehrenberg 1839 Genus **Sakesaria** Davies & Ponfold 1937 **Sakesaria** sp. (PI. VIII, Fig. 7, 8, 9)

Stratigraphic level. – Upper Paleocene. **Locality.** – Pernavut Village (South of Kars).

Family NUMMULITIDAE Carpenter 1859

Genus Ranikothalia Caudri 1944

Ranikothalia sp.

(PI. VIII, Fig. 10)

Ranikothalia sp.

(PI. VIII, Fig. 11)

Stratigraphic level. – Upper Paleocene. **Locality.** – Pernavut Village, (South of Kars)

BIBLIOGRAPHY

- Cole,W.S., 1947 The internal structure of some Floridan Foraminifera. Bull. Amer. Paleont., v. 31, p. 225-254.
 - —— 1958 The Genera Miscellanea and Pellatispirella. Bull. Amer. Paleont., v. 36, p. 237-254.
- Davies, L.M., 1927 The Ranikot Beds at Thai (NW Frontier Provinces of India). Quart. J. Geol. Soc. London v, 83/2, p. 260-290,
- Davies, L.M., & Pinfold, E.S. 1937 The Eocene Beds of the Punjab Salt Range. Paleont. Indica n. ser., 24, p. I-79.
- Grimsdale, T.F., 1952 Cretaceous and Tertiary Foraminifera from the Middle East. Bull, of the Brit. Muse. (Nat. Hist.) Geol., v. 1/8, p. 224.
- Hanzawa, S., 1962 Upper Cretaceous and Tertiary three-layered Foraminifera and their allied forms. Micropaleontology v. 8/2, p. 129-186.
- Hottinger, L., 1960 Recherches sur les Alveolines du Paleocène et de l'Eocene. Mémoires Suisses de Paleontologie v. 75/76.
- Kaever, M., 1970 Die Alttertiären Grossforaminifer Südost Afghanistans unter besoderer Berücksichtigung der Nummulitiden Morfologie, Taxonomie und Biostratigraphie. Geologie in Münster.
- Pfender, J., 1934 A propus du Siderolites vidali Douv., Bull. Soc. Geol. France, S.4, p. 225-236.
- Reichel, M., 1931 Etude sur la Alvéolines. Mem. de la Société paleontologique Suisse, v. LVII.
- Reichel, M. & Sigal, J., 1969 Description d'une Lacazina nouvelle (Foraminifères Miliolidés) dans le Paléocène du Taurus de Beyşehir (Turquie). Rev. Espanola de Micropal., vol. 1, p. 317.
- Schlumberger, C. 1894 Note sur Lacazina wichmanni n. sp.. Bull. Soc. Geol. France., ser. 3, T. 22, fas. 5, p. 296-298.
- Smout, A.H., 1954 Lower Tertiary Foraminifera of the Qatar Peninsula. Brit. Mus. (Nat. Hist.) p. 1-96, pJ. I-XV.
- Vaughan, T.W., 1929 Additional new species of Tertiary larger Foraminifera. J. Paleont. v. 3, p. 337.
- Vaughan, T.W. & Cole, W.S., 1941 Preliminary report on the Cretaceous and Tertiary Foraminifera. Geol. Soc. Amer. Spec, paper, p.1-137, pl. 1-46.

PLATE I

- 1 **Alveolina globula** Hottinger. Axial section, x 20.
- 2 **Alveolina globula** Hottinger. Slightly oblique axial section, x 20.
- 3 Alveolina (Glomalveolina) minutula Reichel & Renz Axial section, x 47.
- 4 **Alveolina aramaea** Hottinger. Axial section, x 18.

PLATE II

Fabularia alpani n. sp.

- 1 Equatorial section, holotype (Es. K. 3), x 22.
- 2 to 5 Axial sections, paratypes (Es. K. 4, 5, 6, 7), x 17.
- 6 Equatorial section, paratype (Es. K. 8), x 26.

PLATE III

Saudia labyrinthica Grimsdale

- 1 to 2 Axial sections, x 15
- 3 Tangential section, x15
- 4 Tangential section, x15
- 5 Partly magnified of fig. 3, x23

PLATE IV

Miscellanea miscella (D'Archiac & Haime)

- 1 Axial section, microspheric form, x11
- 2 Subequatorial section, incomplete, microspheric form, y 10
- 3 and 5 Axial sections, megalospheric forms, x 20
- 4 Equatorial section, megalospheric form, x20
- 6 to 7 Subaxial sections, microspheric forms, x11

PLATE V

Kathina subsphaerica n. sp.

1 - Axial section, holotype (Es. K. 9), x44

- 2 and 3 Axial sections, paratypes (Es. K. 10, 11), x 44
- 4 Subequatorial section, paratype (Es. K. 12), x 30
- 5 Equatorial section, paratype (Es. K. 13), x30
- 6 Kathina selveri Smout Axial section, x46
- 7 Kathina pernavuti n. sp. Axial section, holotype (Es. K. 14), x 44

PLATE VI

Lacazina blumenthali Reichel & Sigal

(Megalospheric form)

- 1 Axial section, x 25
- 2 Axial section, x 14
- 3 Axial section, x 14
- 4 Equatorial section, x 27

PLATE VII

Lacazina blumenthali Reichel & Sigal

(Microspheric form)

- 1 Subequatorial section very close to proloculum, x11
- 2 Oblique section, x 17
- 3 Subaxial section, x 14

PLATE VIII

- 1,2,4 **Dictyoconus** sp (1) Axial sections, x 14
- 3,5,6 Dictyoconus sp. (2)
 - 3, 5 axial sections, 6 equatorial section, x 20
- 7 to 9 Sakesaria sp.
 - 7, 9 axial sections, 8 equatorial section, x 26
- 10 **Ranikothalia** sp. (1) Axial section, x 18
- 11 **Ranikothalia** sp. (2) Axial section, x 10

PLATE I

